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A FEEDBACK CONTROL MODEL FOR NETWORK FLOW

WITH MULTIPLE PURE TIME DELAYS
Jacques Press

ABSTRACT

A control model describing a network flow hind-
‘ered by multiple pure time (or transport) delays is
formulated. Feedbacks connect each desired output
with a single control sector situated at the origin.
The dynamic formulation invokes the use of differen-
tial-difference equations. This causes the character-
istic equation of the modelto consist of transcendental
functions instead of a common algebraic polynomial.
A general graphical criterion is developed to evaluate
the stability of such a problem since the literature is
evasive in the case of multiple coupled delays. A
digital computer simulation later confirms the valid-
ity of such criterion. An optimal decision-making
process with multiple delays serves as an application
of the analytical effort.
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SECTION I
INTRODUCTION

A. PROCESSES WITH MEMORY AND ANTICIPATION; THE
DIFFERENTIAL-DIFFERENCE EQUATION

In concept, there exists a wide class of mathematical processes which op-
erate in the present using knowledge acquired from the past as well as informa-
tion obtained from the future. This reveals the presence of memory, the ability
to remember the past, as well as anticipation, the ability to predict the future.

If these processes are to be realizable in our world then they must obey the law
of causation: the cause of things must come before their effect. A chronological
order is imposed and the processes, in this case, "follow their own destiny."
The capacity to anticipate is suppressed and only present and past states are
now considered. Despite this restriction, the realization of a man-made process
or system* operating in the present using knowledge from the past is an elegant
concept since it simulates the way humans learn and think.

Processes with memory can be expressed mathematically by an interesting
class of equations: the differential-difference equations, involving derivatives
along with differences. The literature on such special mathematics embraces
many disciplines and spreads over three centuries in research. The earliest
work available is that of Bernoulli,lT who in 1728 was studying oscillatory mo-
tion of strings. In applied mathematics, famous names like Lagrangez, Poisson®
and Cauchy are often associated with equations of differential-difference form.
They are reflected by today's contemporalgies in this field such as Bellman and
Cooke’, Pinney , Ogutzoreli , and Wright . Phenomena possessing memory have
also been studied in the physical sciences by Bateman® in radioactivity, Gerasimov'’
in heat conduction, Lagrange!! in sound propagation, Arley'? in cosmic radiations,
Minorsky”, Nisolle 14, Volterrals, Pica.rdls, and Satche !’ all in mechanics and
elasticity. In biollé)%g, one finds differential-difference gquations applied to the
renewal Flrocess "7, natural and artificial selection” , and the fight for
survival “ .

*For convention purposes, appendices A and B provide basic definitions for the word system and
its associated prefixes, such as feedback and control, in context with this work. Figure 1 illus-
trates these definitions.

A superscript indicates a reference number appearing in the bibliography.



Economists have also made contributions with these special equations. To
mention a few, Frish?? in economic dynamics, Kalecki 23 in business cycles,
James and Belz ,24 Samuelson?® , Bateman ?° in retail trade theory, Theiss 2’
in the study of savings and investments, and Tinbergen?® in the modeling of
ship-building cycles are all notable names.

B. THE DELAY PROBLEM

In modern times, operational models with transport or time delays form
the new vocabulary for procedures governed by differential-difference equa-
tions. A delay means that one or more operations are temporarily suspended
in time due to some constraints.

In engineering, one can cite numerous references on time-delay problems:
Tsien?? in rocketry, also Smith3%in electrical systems, Truxal3! in electrical
signals, Rogers and Connolly3? in analog computers, Huggins 33 in systems dy-
namics, Oetker3*, Paul®®, Caughanowe and Koppel3¢, and Tyner 37 all in
process control for the chemical industry. Most recently, the time-delay prob-
lem has found application in the theory of artificial intelligence. 38

C. THE DELAY PROBLEM AND THE MANAGEMENT FUNCTION

As far as management analysis is concerned, it is well-known that prac-
tical trends in the U.S. are brought about by two schools of thought: those who
practice the case method, relying on past cases, and those who favor the quan-
titative approach, relying on analytical knowledge gained by studying physical
systems. The first method is reflected by the Harvard circles while the second
one is practiced by the Stanford and MIT groups. Forrester % in applying the
latter method at MIT has stressed the importance of time delays in industrial
dynamics such as production, inventory and sales.

The new field of Operations Research, still part of the quantitative approach,
renders time-delay problems imminent firstly in the network flow analysis where
minimum transition time is usually the objective and secondly in Queueing and In-
ventory Theory®®. Prabhu*! has considered similar mathematics in his work on
models for dams and grain storage.

D. THE GENERAL OBJECTIVE OF THIS RESEARCH

In the real world, autonomous organizations are confronted with the daily
task of applying continuous improvement mechanisms in order to enhance the



viability of their working processes. Such strategy involves tactical efforts on
the part of decision-makers. Faced with commitments and schedules, the
management firstly evaluates the input resources at hand, secondly applies a
planned intervention, and finally seeks feed-back, which is often delayed in time,
in order to determine the effectiveness of the motion taken.

Such a philosophical management model has possible application in the
following:

1. Transportation networks suffering delays in schedule.

2. The administration of federal, state or local programs where a éompli-
cated bureaucracy often delays needed resources such as monetary
funds. ‘~

3. Administrative control of the economy such as the imposition of céilings
on prices and wages. In this case, feedback of the results created is
heavily delayed due to the complexity of the economic sector.

This paper intends to highlight the above applications through mathematical
modeling. The effort illustrates the decision-making process involved in a
network flow containing information and resource channels hindered by coupled
pure time delays.



PRECEDING PAGE BLANK NOT FILMED

SECTION II 7
MATHEMATICAL BACKGROUND

A. ASSUMPTIONS LEADING TO THE DIFFERENTIAL-DIFFERENCE
EQUATION

One can interpret processes with memory and anticipation using the follow-
ing general functional equation:

o[V (% )] =f{¥y (1), ¥y (ttt, (),

Y (ttt, (t)), =y (ttt (1),

(1)
X (t), X (t tt, (1)), X (tt, (1)),

X (t £t ()},

where @ is a generalized n*" order (n > 0)1 lmea.r or non-linear, differential or
difference, partial or ordmary operator. y and X are vectors of the various
dependent and independent variables (functions of time) respectively. t;, t,,

. . . t_represent backward or forward delays in time, themselves possible
functlons of time. Terms like ¥ (t * t_(t)) signify that y is evaluated at a time

t shifted in the future by +t, (t), or in the past by -t (t). Such a formulation
must also be accompanied with proper initial, boundary and constraint conditions.

- Unfortunately, no tools are available to fully treat eq. (1). Simplifying as-
sumptions must be made. If one is restricted to a realizable, i.e. non-anticipatory,
linear, i.e. the principle of superposition holds, deterministic (non-probabilistic)
system and furthermore, if the dependent variables are functions of time only,
and having constant coefficients along with constant delays then eq. (1) reduces
to the following differential-difference equation:

DX ()] = f {xX (t - t,),%x(t=t,), "X (t-t)X(t), t} (2)

Preceding pag_é_hlankﬁ]
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where

n n—1
D[] = and +an_1d +...+ali
dtn dtn-1 dt

is the linear ordinary differential operator, with the a's being constant coefficients.

If, in addition, the process is instantaneously dependent on just the present
state, then eq. (2) further reduces to the ordinary differential equation which
traditionally governs countless mathematical models:

D [X (t)] = f (%, t). (3)

Eq. (3) is indeed restricted when compared to eq. (1).

Equation (2), which assumes present and past states, is expressed explicitly
for a single input-output system as:

n

n-1 d
- x(t) +a__ gtTi X(t) 4+ + a, d_tx(t) = byx(t) + b, X(t-t;) +byx (t - t,)
tn

(4)
+ e e +bnx(t-tn)+u(t),

where u(t) is a prescribed input activating the process. The a's and b's are
constant coefficients.

B. THE LAPLACE TRANSFORM OF A DIFFERENTIAL-DIFFERENCE
EQUATION

Since Eq. (4) is linear it can be transformed to a simple polynomial form
using the well-known Laplace Transform, L. Remembering that

£ Ej({;it)] =s and L [f (t-t)] = e °'1,



Eq. (4) becomes:

a, sn ra__, gn-1 + et sags :bO +b1 e-étl +b2 e-st2 , ... bn e-Stn
+ £ {u (t)} (5)
(e =27..4)

One obtains the characteristic equation of the system that eq. (4) governs by
rearranging eq. (5) and suppressing the input. Therefore,

n-1 - - l
LS e ags by~ byeTtt L bemst2 L -et b_e~ttn = 0(6)

S — n
F(s,e)_ans +a N

is called characteristic to the system because it describes the free behavior,
the outside input being suppressed. This equation helps determine stability, a
salient feature in any system study, as later shown.

C. THE MATHEMATICAL FORM OF THE PURE TIME DELAY

S

Terms containing e~° in eq. (6) correspond to the various transport lags or
delay terms such as y (t - t,) present in eq. (4). The syntax of the word '"time-
delay' is often misleading due to the existence of numerous synonyms. Depend-
ing on the field of study, the following definitions occur in the literature:

(1) distance-velocity lag (Mechanics)

(2) retarded action (Mechanics)

(3) dead time (in Electrical Engineering)

(4) transport lag or delay (in Transportation Science)
(5) pipe-line delay (in Chemical Engineering)

(6) iddle period (Operations Research)



(7) pure time delay (Applied Mathematics)
(8) retarded argument (Applied Mathematics)
(9) translation operator (Applied Mathematics)

They all refer to the same transformation:

pure-time delay
y (t)—>» —y (t - t))
of period t,

The confusion arises when another function is mentioned: the phase or time lag.
The latter is called, at a loss, an exponential delay.:"9 Various such transforma-
tions are illustrated in Figure 2. The first-order time lag 1/(s 7+ 1), for in-
stance, produces an output at the instant the input activates it. The pure time
delay e *‘}, on the other hand, does not respond for a time period t, after the
input activates it, and only then, the response comes out as the exact image of
the input.

This work will adopt the following notation:

st

Ll (t-t)l=e

! -~ pure time delay (which concerns

most of this research)

£ [e_t/‘rl] :1—:simple time lag (1%°% order)
s T, +



SECTION III

THE NETWORK FLOW GRAPH METHOD FOR
PROCESSES WITH PURE TIME DELAYS

A. FROM THE DIFFERENTIAL-DIFFERENCE EQUATION
- TO A FLOW GRAPH

Instead of working directly with a differential-difference equation it is pos-
sible to manipulate its Laplace equivalent, in a graphical form. As an illus-
tration, consider the following coupled system of differential-difference equations
having a pure time delay and a simple time lag:

5('1 (t) = a prescribed function, f (t), )

serving as an input.

X, (t) = %, (t) - a x; (1) (8)

X, (t) = K %, (1) | (9)

X, (t) = e"7T %, (1) (10)
(time lag)

xg (t) = x, (t) = Ji& (t) dt | (11)

X (t) = X (t = t)) | 12)

(pure time delay)

(') signifies d/dt. K, A, 7 and t, are constants. The Laplace transforms to
equations (7-12) are:

X, (s) =F (s) . (13)



s X, (s) = s X (s)-aX, (s) (14)

s X, (s) =K s X, (s) (15)

1 .
sX4(s):TS+1-sX3(s) (16)
X (s) = X, (s):_i_'-s X, () (17)
Xg () = e X (9) (18)

Utilizing the flow graph method exposed in Appendix C, eqs. (13-18) can be
represented by the network flow appearing in Figure 3a. Such a graph consists
of three major terms, shown in a brief version in Figure 3b as:

the series product of all the

H(s) =H I—K—l 1. terms in cascade excluding (19)
TS S the pure time delay,

D(s)=D= e °'1 = the pure time delay, (20)

G(s) =G=-a=the feedback loop. (21)

B. THE TRANSFER FUNCTION FOR A SINGLE PURE
TIME DELAY PROBLEM

Applying Mason's Loop Rule (see Appendix C) it is possible to obtain the
transfer function (T.F.) defined in Appendix B for the system in Figure 3b as
follows:

10



P, =HD ' (22)

LI:_HDG (23)
A:1-Ll:1+HDG (24)
AL =1 (25)

where P, is the only forward path, L, is the only feedback loop factor,A is the
determinant, and A is the cofactor. Thus

N=1
TF:E:PiAi HD

- (26)
A 1+HDG

Setting the denominator of equation (26) equal to zero, yields the characteristic
equation for the process:

1+HDG=1+H(s)'D(s) G (s)
| (27)
-1 - akK 'l-e_Stl -0
(ts+1) s

(C) THE CASE OF MULTIPLE TIME DELAYS:

Consider a more complicated case. One can allow for two pure time delays
as shown in Figure 4a. For this case one has, again for Mason's Loop Rule:

I
oo
=

Py 1 1 (28)
P, =H, D, o (29)

(30)



L,=-H,D,G, | (31)

32
A=1-(L, +L,))=1+H, D G +H,D,G, (32)
Al =1 (33)
A =1 (34)
2
and the T.F. is:

H D,.D

T. F. 1 DDy (35)

" 1+H, D, G +H,D,G,

This problem can be said to be a trivial extension of the single delay case. This
is so because it can be separated into two single delay problems as shown in
Figure 4b. The two loops are not coupled since the output of the first system is
directly used as the input to the second one and the latter has no feedback in-
fluence on the first one. If coupling is present however then the system is not
trivial. Figure 4c shows the non-trivial case for two delays. For this flow
graph, one has:

P, =H, H,D, D, | (36)

P,=0 37

L, =-H, D, G (38)

L, =-H K D, D, G, (39)
A=1-(L,+L,)=1+H D (G +H,G,D,) (40)
A, =1 (41)

12



and therefore,

H, H, D, D, ' (42)
A 1 +H, D, (H, G, D, +Gy)

Extending the work to a non-trivial problem with N delays, the flow is
shown in Figure 4d. Its general T.F. can be shown to take the form:

N
| l H; D,
1=1

T. F. = : (43)

1 +i [Gjﬁ H, Di}

i=1 i=1

where

summation of terms over the j index from 1 to N,

'MZ
Il

-
1]
—

= product of terms over the i index from 1 to N.

e

-
It
-

D =e ' (pure time delay)
G = feedback terms

H. = product of all terms in each it" forward path between nodes, ex-
cluding each D, .

If one sets the denominator of equation (43) equal to zero then the result yields
the characteristic equation for the general non-trivial case:

N j
F (s, es) =1 +Z [Gj I | Hi Di} =0 (43a)

i=1 T i=1

with G, and F; containing algebraic terms in s, and D; containing the exponential
terms e °‘i .« As an illustration, if three non-trivial pure time delays are
present then equation (43a) takes the form for N = 3:

F(s, e)=1+G, H D, +G,H, HyD, D, + G, H, H, H; D, D, D,

—&(tl+t2)

1 +G, (s) H (s)3e_Stl + G, (s)H (s) H, (s)*e

(43b)

. -s(ttty+ts3)
+ Gy () H, (s)H, (s H, (s)re 172737 -0

13
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SECTION IV
THE STABILITY OF PROCESSES

HAVING PURE TIME DELAYS

A. DEFINITIONS

A linear system is defined as stable if the time function representing its
response to a simple impulse input remains bounded in amplitude as t ~® , and
unstable otherwise. More important, a stable system is asymptotically stable
if its impulse response tends to zero as t—~® . Since the transient response
resulting from an arbitrary input, or disturbance, can contain only time func-
tions of the type which occur in the impulse function, it is a corollary to this
definition that an asymptotically stable linear process will eventually return
to equilibrium for any transient disturbance. It can also be shown that the out-
put of an asymptotically stable process will remain bounded if the input is
bounded. In the real world, processes are not created to simply be stable for
a short period. They must be stable in the long run. Therefore asymptotic
stability (t - «) is the prime objective. To shorten notation, in the rest of this
work the word stable will signify asymptotically stable. Finally if a system is
stable one desires to know how close it is to being unstable. This is the addi-
tional concept of relative stability as compared to absolute stability, previously
discussed.

B. SURVEY OF THE LITERATURE ON STABILITY:

Numerous criteria based on the previous definitions are available to
provide an answer to the question of stability for linear systems. These methods
are either amnalytical or graphical. Basically, they all start with the character-
istic equation derived by Laplace transformation. Traditionally, the analytical
approach is reflected in the Routh and Hurwitz criteria and the Root-Locus
method. The first two answer the question of absolute stability while the last
one determines relative stability. -On the other hand, names like Nyquist, and
Bode often appear when the graphical approach is selected. Numerous other
criteria have also been derived. *?

recaing age bk |
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(i) The Analytical Methods:

The Routh and Hurwitz criteria give fast results *3 for the following
characteristic equation:

2+a s3+...a s = Q0 (44)

8 + @ 3 n

s+azs

where the a 's are constants. This equation corresponds to a process governed
by ordinary differential equations with no differences, and where n, the number of
roots of equation (44), is finite.

The exponential terms in equation (43a), on the other hand, are periodic by
definition: .

Tsty “(otiw)t, —oty . Tiwty
e = e = e . e

ot “i(wt;*2n7)

_ et (n=0,%1,£2...) (45)
(i ={-1)

and thus equation (43a) is transcendental with an infinite number of roots.

Although the stability requirements are the same for a purely algebraic
characteristic equation as well as for one with exponential terms, the finite
analytical criteria fail to give exact results for the latter. This is due to the
presence of the infinite order polynomial which represents the exponential as
follows:

e l=l-t s+ 1 L. (46)

Attempts have been made to approximate e **1 by truncating this Taylor series
expansion. This approximation has been shown to be contradictory. Choksy44
demonstrated that, depending on where one truncates the series, the process
can be found to be both stable and unstable when the Routh criterion is later ap-
plied, for instance. Other approximations to e *%, have been derived in order
that the Routh criterion can handle it. Truxal3! discusses various ones

in increasing order of sophistication. Firstly, he starts with the exponential
function expressed as a limit:

16



(47)

but mentions its weakness at n = 3. Secondly, he proposes the McLaurin series
approximation as:

e 17 - 1 (48)
t2 s t3s3
Loty sy =5 733

which is derived from the previous Taylor series expansion, again with limi-
tations. Thirdly, the Padé approximation table is presented. This is a ratio of
two finite polynomials with selected coefficients (see Figure 5). One can choose
any one fraction in this table as an approximation to e % . The higher order poly-
nomials in the numerators or denominators produce a better accuracy. The
Padé approximation and its extension, the technique of Single and Stubbs

which produces a similar ratio, are favorite methods in industry.‘”'3 5

Instead of customizing the troublesome exponential to the Routh criterion,
an effort has been‘directed to the root locus technique. Krall*®'*”  was initially
interested in the roots of transcendental equations from an involved mathematical
point of view. Finally in 196 7, he produced a digital algorithm*® used to generate
the root locus diagram for an equation having an e™s term. Such studies were
pioneered by Chu*® in 1952.

All of these works, so far, have considered only the case of the single pure
time delay, thus providing restricted results. Contributions to the problem of
multiple delays are very rare, probably due to the fact that most real-world
applications assume that the multiple case is a trivial extension of the single
case. This is not always so, as discussed in Section IIl. Yuan-Yun, Quing and
Lian®° produced a paper on multiple delays from a sophisticated analytical
view. In addition, Shaughnessy and Kashiwagi 5! have derived a stability indica-
tive function for the multiple delay case.

(ii) The Graphical Approaches:

These methods, such as the Nyquist criterion, can determine exactly the
relative stability of systems with pure time delays. They handle the latter
without any numerical approximations. The Nyquist criterion and its application
to the case of a single delay are outlined in Appendix D. Figures 6a and 6b refer
to the text in this appendix. '
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C. THE SATCHE TECHNIQUE:

It can be seen that the simple example used in Appendix D produces a Nyquist
plot difficult to draw. The diagram is even more troublesome to evaluate for
higher order polynomials, not to mention the multiple non-trivial cases.

Satche !7 derived the following elegant procedure which greatly simplifies the
Nyquist plot. One supposes that the characteristic polynomial in equation (43a)
can be separated into pure algebraic and pure exponential parts. Therefore,
F(s, e®) can be written as:

F (s, %) = F, (s) - F, (&%) (49)

The loci for F, and F, are separately drawn in Figure 6c according to the Ny-
quist method. Looking at that figure, the F, (s) curve is a closed form algebraic
polynomial in s. It closes on itself and part of it resides at an infinite distance
from the origin. The area it encloses is cross-hatched. The F, (e®) locus, on
the other hand, describes a finite contour around the origin., The area enclosed
by F, is covered with dots. In the Nyquist Diagram, one recalls that it is
necessary to determine the number of rotations performed by a vector, originat-
ing at the origin, whose head follows the contour I as shown in figure 6a. This
number of revolutions is identical to the number of roots with positive real
parts (unstable roots). In the Satche diagram (Figure 6c), a similar vector is
drawn for each contour in F, and F,. Then, according to equation (49), F(s, e*)
is the resultant vector for F, - F, . It joins the points A and B in the diagram.
Both ends of the vector AB are now free to move. The reader can follow the
motion of AB as OA and OB are rotated clockwise in Figure 6c. AB revolves

on itself while its magnitude changes. At the lower intersection of F;, and F,
the magnitude is zero and as soon as the intersection is passed, AB emerges
with a complete half rotation. The same phenomenon occurs at the other inter-
section. Thus the intersection points are critical. Each point forces AB to
rotate half a revolution. The Nyquist criterion can now be modified to impose
on AB the condition that if the vector performs one or more complete revolution
on itself then the system is unstable. In summary, three cases arise in this new
criterion called the Satche criterion:

(1) If the two curves in the Satche diagram are completely disjoint, the
system is stable. This case is obvious since the angle of the rotation
of AB is bounded and always less than 360°,

(2) If one curve completely encircles the other without intersection, the
system is unstg.ble; this is another obvious case, since at least one
revolution of AB is inevitable.
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(38) If the two curves intersect, then stability can be determined as follows.
Recalling that s = i in the Nyquist plot, let «; < » < w, be the param-
eter range of two successive outermost intersection points on the
curve of F; during which F; lies within the area bounded by the
F, curve, (i.e. the area where instability can occur corresponding
conformally to the right-half of the complex s-plane in Figure 6b.)
Then if that part of the curve of F, corresponding to the same « range
lies completely outside the area bounded by F» then the vector AB
suffers no net rotation and the system is stable.

This case is demonstrated by Figure 6c¢ as follows: One notes that the
vector A_'B , just above the first intersection proceeds to become A;B3
without a.ny rotatlon, thus indicating stability. Once the upper inter-
section is crossed, A, B rotates 180° to become A B,. The latter
proceeds clockwise, and somewhere after AB it eventually has the
same direction as A B, indicating one complete revolution. Any
further rotation dictates instability.

To the author's knowledge the above Satche criterion has been applied only
to single pure time delay cases. It is possible to extend the criterion for general
characteristic equations with numerous exponentials provided that the algebraic
and exponential terms can be separated. The proof of this extension involves a
simple axiom from vector algebra, namely the law of uniqueness in vector ad-
dition. This states that to every pair of vectors, there is a unique vector, called
‘their sum. As an illustration, equation (49) can be written in detail as:

F(s, e) =F, (5) - ) F, (e°ti-1) 50)

where F,, F;, . . . F; form a series of curves on the Satche diagram, each one
corresponding to a different exponential in equation (43a). One can add up the
vector joining a point on the F, locus to a corresponding one on the F._, locus.
The result is a single vector (the addition law) which corresponds to a new locus,
F, + F,_, . The new vector is then added to the appropriate vector for F;_

The procedure is repeated until a final curve and corresponding vector are ob-
tained containing all of the exponentials. This curve is then compared to F, (s)
as done in the simplified Satche diagram, in Figure 6c. For the case of numer-
ous exponentials, the F, curve has more than one intersection with F,. For
stability, one should consider only the outermost crossovers.
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D. COMPUTER IMPLEMENTATION

The Generalized Satche criterion is readily adaptable to computer pro-
gramming. Such effort is performed in order that the computer can determine
numerically whether a system is stable or not without recourse to a diagram.
The Satche diagram thus becomes secondary and serves only as a graphical
summary of the numerical work.

Proper instructions in FORTRAN are set up for an IBM 360/91 system.
The program, accepts any number of pure time delays, within the capability of
the machine. The graphical capabilities of CALCOMP (Computer Graphics) are
then used and the final result is a Satche diagram for a non-trivial multiple
pure time delay problem drawn by the machine. The application that follows
illustrates the procedure.
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SECTION V

APPLICATIONS

A. AN OPERATIONAL MODEL WITH TWO NON-TRIVIAL PURE
TIME DELAYS:

Consider a real network possessing both an information and a material, or
resource, flow. Information flow is almost instantaneous since it usually in~
volves electrical or electronic means such as telecommunications. Resource
flow, on the other hand, suffers delays in schedule such as those in transpor-
tation and in office bureaucracy. The process is shown in Figure 7 and con-
sists of:

1. A management sector made up of:

(a) A single junction point where feedback information from two desti-
nation points is subtracted from the forward resource flow rate
entering, (data processing),

(b) A control having the decision-making option to vary a factor, K,.
which, in turn , takes on fractional values between 0 and 1 and
multiplies the resource flow rate such as to increase or diminish
it.

2. An undesirable forward time lag (1/[r; s+1]) which deforms the char-
acteristics of the resource rate function. The time-lag occurs quite
often in the real world, as demonstrated by Forrester.>>

3. An intégrator which changes the resource flow rate into a flow of
individual units. '

4, Two pure time (or transport) delays, hindering the flow which eventually
reaches two destination points.

5. An information line connecting each of the two destinations with the
original junction, bringing back knowledge on the volume level in time-
past due to the presence of the delays.

-The input takes the form of a rate (units/time) since the management sector
traditionally deals with rates. The destination points on the other hand, situated
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at a lower level in the organizational hierarchy, usually report on the volume
level of actual units received. An integration is therefore required to transform
the rate of flow into a level of flow. Figure 8 represents the mathematical flow
graph for Figure 7. One notes that the model constitutes a non-trivial case since
the two destination points report to the same centralized data processor. The
differential-difference equations extracted from Figure 8 are:

X, (£) = %, (t) = by x (t) - b, x, (t) (51)
5(3 (t) =K 5<2 (t) (52)
x, () =¢ /T X, (t) (53)
X (t) = fi4 (tydt (54)
Xg (t) = x (t - t)) (55)
X, (£) = %5 (t -t ) ~ (96)
where
O =L
5{1 (t) = agei:.bitrary input rate (units/time) originating from the environ-

x, (t) = the resultant rate exiting from the junction point (units/time)

X, (t) = the rate of resource flow (units/time) resulting from the manage-
ment control on x, (t).

X, (t) = the rate of resource flow (unit/time) transformed by the undesirable
time-lag.
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x5 (t) = the level of resource flow (units), once the above rate (units/time)
is integrated.

X (1), x,(t)= the levels (units) at the two destinations during which the flow
suffers pure time delays of t, and t,, respectively.

K =the management control (dimensionless) which is to be varied.
by, b, = the feedback constants (1/time).

Equation (52) describes the transformation at the central junction; feedback
terms such as b, x, (t) and b, x, (t) (units/time) represent the rate at which
the resource units entering the destination points are being rejected due to
overflow created by constraints. A linear relationship has been assumed be-
tween the rejection rates b R (t) and b2 X, (t) and the levels x (t) and x, (t),
since a higher "crowding" of units at these receiving stations causes the latter
to produce a higher rejection rate. The central junction processor (such as a
computer) is programmed to take the above into account and thus pre-plan the
schedule by subtracting the rejection rates from the entering resource rate as
shown in equation (52). That difference enters the management control where
an optimal value of K has to be determined. The latter should allow for maxi-
mum entering flow rate and, at the same time, provide asymptotically stable
level fluctuations at the destination points.

B. APPLICATION OF THE GENERALIZED SATCHE TECHNIQUE:

To determine such optimum value of K, the generalized Satche technique is

used. Applying first the Laplace Transform to equations (51~-56), six equations
are obtained in the s domain. Combining these into one and rearranging terms
as in equation (5), the characteristic equation becomes:

S8t tty)

F (s, e)=s(1;s+1) +b1Ke_Stl +b,Ke =0 (87)

The same result can be obtained directly from the graph in Figure 8 along
with the general equation (43a) for N = 2. The latter becomes:

F(s, e®)=1+G H D, +G,H D H D,
(58)
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and since in Figure 8,

G, =-b,
G2:—b2

then equation (58) eventually becomes equation (57). Since equation (57) takes
the form of equation (50), one has:

F (s, e°) = F, - F, (59)
with
Fi=s(1ys+1) (60)
and
F2:_b1Ke_Stl _b2Ke‘S(t1+t2) (61)

Substituting s = i » (see Appendix D) into equations (60) and (61) one obtains
(i=v-=-1):

Fl(@)==-7, 0% +iw '(62)
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“iwt Siw(tytt,)

Fy(«) =-b Ke '-b, Ke

B

- by K{cos (0t,) -isin (wt,)}
- by, K {cos [(t; + t)) w] - isin [(t; +t,)) ]} (63)

Separating real and imaginary parts yields:

xl (w) = Re F]_ (w) - - 7-1 602 (64)
Y, () = ImF, (&) = w (65)
X, (&) =Re F, (@) = - b, Kcos (wt,) - b, K cos [(t, + t,)a (66)

Y, (¢) = Im F, (@) =b; Ksin (w t;) + b, Ksin [(t; + t,).] (67)

where Re = 'real part of' and Im = "imaginary part of.'" The constants in
equations (64~67) are arbitrarily selected as:

b, b, =1 (68, 69)
t, =1 . ('%0)

ty =2 (71)

7, = 1.0 (72)
K =0.45 (73)

remembering that 0 < K < 1.
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C. COMPUTER APPLICATION OF SECTION (B)
The general program described in Appendix E is utilized to obtain the neces-
sary numerical and graphical results for stability. The procedure consists of

the following five major steps.

(i) Generation of Values for X , Y ,, X, Y, in Equations (64-67):

The parameter  is varied over an interval of -7 to +7 with an incre-
mental value arbitrarily chosen as 7/256. Thisw takes on 513 values. Cor-
responding numerical values for X, Y,, Y,, and Y, are generated by the com-
puter utilizing equations (64-67). The output is shown in Figure 9. There, the
top headings state the numerical values of the constants as in equations (68-73).
"B(1) TO B(M)'" and "T(1) TO T(M)" represents equations (68-71). Subscripts
appear in parantheses, with M = 2, the number of pure time delays in this case.
Due to the presence of sine and cosine in equations (66-67), X ) and Y, are
periodic and thus redundant outside the + ; to -7 interval in w. The increment
for » is selected such as to produce satisfactory smooth curves when computer
graphics are later used.

The nature of equations (64-65) dictates that F, is a parabola symmetric
about x~axis, open to the left and going through the origin on the Satche diagram.
It closes on itself at infinity as in Figure 6c. The area of the right of this parab-
ola is enclosed by F,. Equations (66-67) indicate that F, is a closed curve
around the origin and thus F, and F, intersect once or more in the Satche
diagram. Therefore, of the three possible cases outlined in the Satche criterion
in Section IV, only the last and most general one will be examined here.

(ii) Locating the Regions of Intersection of F and F,:

The set X, and Y, along with the set X, and Y, each corresponds to an
ordered pair (a point) on the F, and F, curves, respectively. It is first neces-
sary to determine numerically the points where these two curves intersect.

The SCAN SUBROUTINE, a numerical algorithm (see Appendix E), performs this
required step as follows. Starting with the first line of X, and Y, in Figure 9,
the entire ordered X,, Y, set is scanned for that pair on F, closest in distance

to that point (X,, Y,) on F,. The algorithm utilizes the distance definition for
two ordered pairs:

D= X, -X)? + (Y, - Y2 (74)
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The pair X,, Y, found closest is at a distance identified as DMIN. Further-
more, if DMIN is less than or equal to the value 0.025 (an estimated very small
term) then X » Y, is not only the closest to X, Y, but at these four values
DMIN is near zero and F, and F, intersect. The next pair (X , Y,) on Fl in
Figure 9 is selected and the above procedure is repeated until all of the points
on F, have been examined. Figure 10 gives the results of the work done by
such algorithm. The code N = 0 signifies that X, = ReF, and Y, = Im F,, on that
line, form the closest non-intersection point resulting from the scanning of the
entire set of X,, Y,. Furthermore, N =1 indicates a region of intersection. One
notes that F, and F, do not have each the same @ at N = 0 or 1. The examination
of the column for N in Figure 10 reveals that a long series of 0's first appear
followed by a few 1's, and then more 0's. These 1's indicate a region of inter-
section, with probably the middle line, within these 1's, as being the desired
point. The fact that a region and not a point of intersection can be determined
is explained by the small value 0.025 taken as criterion. The smaller it is, the
smaller the 1's region becomes and the better the resolution. However, an
estimated value that is too small, such as less than 0.025, can cause the scanning
algorithm to miss some intersections depending on how close to orthogonal
(perpendicular) the meeting of ¥, is to F,.

(iii) Locating the Outermost Intersections:

The computer program next examines which two regions of intersections
are the outermost ones with an increasing « for F . These two points are
identified in Figure 11. The last column in that figure gives the bounds for w
corresponding to F,. The numerical values under "OMEGA OF F1" in that figure
correspond to the lower and upper bound on « for ¥, and refer to «, and w,,
respectively, in the Satche criterion.

(iv) Determining if the Values of F, («,) through F, (w) are Enclosed by F,:

. The set of pairs X, (), Y, («,) through X, (»,), Y, (v,) represent the
critical part of F ) and must be examined for possible intersection with F, .
Subroutine SCAN is again utilized, but this time F, and F, are replacing each
other in the algorithm, namely, the entire F, is scanned for each selected point
X, Y, within F, (»,)to F, («,). If an intersection occurs then a section of that
critical part of F, must be to the right of F, and instability is dictated. If no
intersection occurs then two possible cases arise, either F, (v ) through F (w,)
is completely to the right or completely to the left of F,. If it is to the rigixt,
the system is unstable, if to the left, stability is declared, according to the
Satche criterion. The computer program performs the above logic and pro-
duces output of this step in Figure 12. One should read the explanatory N and
L codes in the figure.

27



(v) The Satche Diagram:

The program next stores the preceding results (Figures 9 through 12)
on a magnetic tape. Subroutine SATCHE performs this step such that the tape
can be later mounted on a Calcomp (California Computing) System. This hard-
ware electronically deciphers the code and mechanically draws the Satche dia-
gram. The latter is shown in Figure 13 and summarizes the complete effort
for the case of K = 0.45. One can observe five intersections between the para-
bola for F,, identified with ++++, and F,. F, closes on itself at infinity in the
far right plane. That part is not drawn since it is of secondary importance.
The critical part of F, (»,) through F, (w,), identified by **** goes to the right
beyond the outermost intersections and therefore the case is unstable. Figure
14 shows a highly unstable case with K = 1.0, In this instance the resource flow
rate is at a maximum with no management restraint. Figure 15 indicates a stable
system for K = 0.25. Figure 16 shows a case where for K = 0.35 the critical
part of F, (w,) through F, (v,) is to the left of F;, and terminates at the outer
intersection points. The value K = 0.35 is therefore an optimal case since it is
the largest K for which the process is still stable.

It is possible to confirm the integrity of the generalized Satche criterion y the
computer program and the plotting routine by performing a relatively fast digital
simulation. Since this approach falls outside of the stability theory presented
so far it becomes a fairly rigorous test. The Continuous System Modeling Pro-
gram (CSMP) package provided by IBM 52, performs such simulation. Figure 17
shows the CSMP model which corresponds to the flow graph in Figure 8., The simulation
produces the time response of the process when an input is applied. It solves the
system of differential-difference equations (51-56) utilizing a digital integration
method, the Adams technique, provides a discretized evaluation of the two pure
time delays, and finally produces a numerical and graphical display of the out-
put to the system. In this model simulation, a unit step function is arbitrarily
chosen as input. One is interested in the fluctuations as time progresses of x, ,
the final destination level, representing the output. Figure 18 shows the results
for K = 0.45. First of all the response of x, does not appear until time = 3.00.
This represents the overall initial pure time delay of t; (=1) +t, (=2) = 3.
Furthermore the level at x, in Figure 18 shows growing oscillations indicating
an unbounded output thus causing the overall process to be unstable. Figure 19
shows a stable condition when the above simulation is repeated with K = 0.25,
this time. Here, the final destination level fluctuates significantly at the start
but such transient behavior eventually decays to a settled level as dictated by
the control., The stability for this process is evident at the end of 80 time units.
The simulation is performed a final time with K = 0.35. The oscillations for
this case are shown in Figure 20. The oscillation heights slighly decrease
from one peak to the other revealing eventual asymptotic stability but with a
""settling' time that is much longer than for K = 0.25. The decision-making con-
trol is confronted with two dlternatives. Depending on the trade-off objective,
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the management can apply a tight control on the resource flow such as K = 0.25
‘ and obtain a fast settling but low, level at the destination; or else liberally in-
crease K to the allowed maximum value of 0.35 for stability, causing level
fluctuations which take a longer time to settle but obtaining a higher final
level. In summary, the graph in Figure 18 reveals an unstable system, for

K = 0.45. For K = 0.25, one has a definite stable case. And for K = 0.35, the
system, though stable, is very close to be uncontrollable. The simulation is
therefore in complete agreement with the predictions of the Satche technique
applied in the two-delay case.

D. OTHER NON-TRIVIAL PURE TIME DELAY CASES:

Since the computer program is a general one, numerous delay cases can
be examined. '

(i) Single Pure Time Delay:

This situation is the simplified version with no time lag illustrated in
Appendix D, (Equation D-5). Figures 21 through 23 present three cases for
K =2, 1,7/2 and which are unstable and optimal, respectively. In the last case
7 /2 has been approximated by 1.57. The Satche functions F, () and F, ¢) for
equation (D-5) are iw, a straight line through the imaginary axis and -Ke™*“, a
circle of radius K. Furthermore, the fact that F, in Figures 21 and 23 looks
like an ellipse rather than a circle is no surprise since it is simply due to the
graphic subroutine trying to optimize the area where the diagram is to be drawn;
numerically, Figures 21 and 23 represent a circle. Figures 21 through 23 are
in agreement with the results in Refs. 42 and 43.

Figures 24 and 25 show an unstable and a stable single pure time delay
case with time lag, respectively. The characteristic equation for these two
cases is taken as equation (57) with b, = 0. These two figures illustrate,
somewhat, how to stabilize a process by manipulating K and 7,. A decrease in
7, in Figure 25 flattens to the right the parabola of Fig. 24 as dictated by
equations (64~65). This allows a larger region of F,; to the left of ¥, to be ex-
posed and on which the critical part of F, I(***) can possibly fall, thus producing
a stable case. Another manipulation involves a decrease in K thus concentrat-
ing the critical part of F, (***)to the left of F,, as seen in going from Figure
24 to 25. Here, one also notes that a decrease 'in the time delay improves the
stability.
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(ii) Extension to Cases with Three, Four and Five non-trivial
Pure Time Delays:

The preceding model is extended to incorporate up to five pure time
delays. The general equation (43a) and Figure 4d are utilized with N = 3, 4, and 5.
The characteristic equation for three delays is an extension of equation (57). It
is given as:

F(s, €%) = s(7;s + 1) + bKe 51 4 b2Ke-s(t1+t2) + b3.Ke"s(t1“2.“3) -0 (75)
with
F,(s) =s(7ys + 1) (76)
and
F, (e°) = - [b;Ke~t1 4 b,Ke~s(t1+t2) | b Ke-s(t1+t2+t3)] (77)

For four delays equation (57) becomes:

F(s,e®) =s(r;s+1) + bll(e's.tl
+ b2Ke——s(t1+t2) + b3Ke—s(t1+t2+t3) (78)

+ b4Ke—S(t1+t2+t3+t4) =0
with
F,(s) = s(7ys+1) (79)
and
F2 (eS) - _ [blKe-stl + b2Ke-s(t1+t2) (80)

+ byKe -s(t1+t2+t3+14)]
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And for five delays, one has:
F(s, e%) = s(7;s + 1) + bKe=st1 4 b,Ke-s(t1+t2)
+ bsKe—s(t1+t2+t3) + b4Ke—-s(t1+t2+t3+t4) (81)

+ bsKe—s(t1+t2+t3+t4+ts)]
with
.F1(5) =s(rys + 1) (82)
and

F, (e%) = - [blKEfStl + bgKe"S(t1+t2) + b3Ke-s(t1+t2+t3)

(83)
+ b4Ke—s(t1+t2+t3+t4) + bs Ke—S(t1+t2+t3+t4+ts)]

Figures 26 through 28 illustrate near optimum cases (optimal K) for the three-
pure time delay problem. Figures 29, 30, 31 and 32 presents diagrams for the
case of four and five pure time delays, respectively. Figures 29 and 30 shows a
stable situation while Figure 31 indicates instability. Figure 32 gives a stable
case for five pure time delays.
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SECTION VI

CONCLUSION

A. JUSTIFICATION OF THE DIFFERENTIAL-DIFFERENCE EQUATION:

The models forged so far, containing a combination of continuous and dis-
crete equations (with derivatives and differences) can be simplified to a purely
discrete form involving only difference equations. Such a discrete model poses
no difficulties in the stability analysis. In this case, the characteristic poly-
nomials involve the Z transform which acts efficiently on transcendental terms.}?
As seen, this is not so in the case of the continuous-discrete formulation. In
justification of the continuous approach taken here, the adjectives discrete and
continuous are relative terms depending on the application. As an illustration,
feedback information flow entering the decision-making headquarters in the
form of a telephone call once a day, for instance, appears as a discrete event
among other daily office activities. However, if these daily phone reports serve
to inform the management on a transportation network suffering time delays of
monthly magnitude, then they form a continuous stream while the transportation
flow is of much more discrete nature.

B. COMPUTER TIME:

The total computer time for analyzing the stability of the models presented
so far requires at most 30 seconds of processing per case. Therefore the con-
templation of developing more efficient routines is not pursued.

C. THE CHOICE BETWEEN THE LAPLACE APPROACH AND THE
TIME DOMAIN APPROACH:

The Laplace transform method used here differs noticeably from the theory
developed in the time domain, often called the state variable theory. The first
one is rigorous since it optimizes a model by insuring its stability.. The second
approach, instead, heuristically optimizes an objective function. This function
is often left at the analyst discretion to formulate, based on what he feels are
important variables.

~ Preceding page blank
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D. SUMMARY

,R. Bellma.n53 in a survey on the literature related to Kalecki's Model??,
discusses two characteristic equations, one of the form:

As?_-s+b-ce =0 (84)
where A, b and ¢ are constants, and the other one as:
s = b(e~St1 _ e-st2) (85)

where b is a constant and t, =t; + 1. The above author comments that the
determination of the roots of eq. (84), the one containing a simple delay, has
been fully examined for stability. Equation (85) on the other hand, containing
two coupled delays is, quoting the author, '"considerably more difficult" and
where 'the details are much more perplexing' in the analytical stability ap-
proach. The extended Satche method developed herein, can easily determine
the stability of eq. (85) from the graphical point of view, thus by-passing the
analytical determination of the roots. In addition, since this technique is
computer-based, it serves as a fast and accurate method for a particular user.
Furthermore, the extension to multiple delays is quite impossible without a
computer, justifying the use of a machine. The complexity of Figure 31 supports
such statement.

One notes that, in general, as the number of pure time delays increases, the
allowable value for K decreases allowing for less resource flow. The undesir-
ability of delays in the real world is thus mathematically illustrated. Most im-
portant is the total agreement between the simulation and the criterion predic-
tion. This Satche extension must undergo other tests if it is to become an es-
tablished technique. Finally, the validity of the model for multiple inputs and
outputs and for non-deterministic random variables remains to be demonstrated,
thus providing grounds for further research.
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APPENDIX A

BASIC DEFINITIONS USED IN THIS WORK

A system or process: an arrangement of elements connected or related in
such a manner as to form a working entirety.

. A control system: a system able to regulate or command itself or other

systems.

A feedback control system: ‘a control system where the output of some
controlled system variable is compared with the input to the system so that
the appropriate control action may be formed as a function of the output or

input. Feedback increases the accuracy of a control system and favors
overall system stability.

Modeling: a mathematical method used to express the real world through:
(a) Functional or diffgrentia.l equations.
(b) Block diagrams, similar to flow charting.
(c) Flow graphs. |
Block diagrams and flow graphs are schematic representations of the model's

equations and real components. Appendix B explains the block diagram notation.
The flow graph method appears in Appendix C.

| I_’receding page hla-nk
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APPENDIX B

TERMINOLOGY OF FEEDBACK AND CONTROL: THE BLOCK
DIAGRAM AND THE TRANSFER FUNCTION

A. THE BLOCK DIAGRAM:

The block diagram notation is a graphical representation of the overall
cause and effect relationship between input and output of a process or system.
The components or elements of a system is each characterized by a box (or
block) with an arrow penetrating and exiting, representing an input and output,
respectively. The box usually contains a mathematical transformation such as a
differentiation, integration, division or multiplication which acts on the input to
produce the desired output. Figure la illustrates such a representation. All

‘the blocks are related to one another and eventually form the overall system.
Figure 1b illustrates a generalized beedback control system. In this diagram,
the control block function can be varied, the process is fixed and the feedback
is subtracted (negative feedback) or added (positive feedback) from an input
originating outside the system.

B. THE TRANSFER FUNCTION (T.F.):

The ratio of the output to the input of a system constitutes the transfer
function. This ratio can be determined analytically by equating the output to the
transformed input for each block of the system. This gives a series of coupled
equations which can be combined into a single equation containing the original
input and final output. The ratio of these two is then readily obtained.

The method in Appendix C provides a more elegant and rigorous way of
determining the transfer function for linear, deterministic systems.

Preceding page blank
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APPENDIX C
NETWORK FLOW GRAPHS
AND MASON'S LOOP RULE
A. NETWORK OR SIGNAL FLOW GRAPHS:

Basically, the block diagram notation in Figure 1b can be simplified to an
algebraic graph as follows:

INPUT » OUTPUT

H=NET FORWARD FLOW
G=NET FEEDBACK FLOW

where the transfer function is

QUIPUT _ ¢ p - G2 (C-1)
INPUT 1 -GH

The arrows in the above diagram are called branches while the destination dots
are called nodes. A path is a branch or a continuous sequence of branches which
can be traversed from one signal (node) to another signal (node). A loop is a
closed path which originates and terminates on the same node and, along which,
no node is met twice.

B. MASON'S LOOP RULE:

Equation (C-1) is obtained by equating the incoming flow of values to the
outgoing one at each node, since no accumulation can occur in a flow graph.
This produces a set of equations which reduce to equation (C-1). A shorter
way to derive the transfer function is to utilize Mason's Loop Rule (see ref.
43). The Rule states that, given a flow graph, the transfer function between
two nodes, i and j respectively, is given by: '

* Preceding page blank
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T. F. iy = A (C-2)
where
P, = k *" forward path from variable nodes i to j,
k
A = determinant of the graph,
Dy, cofactor of the path P.j
1y 1y

and the summation is taken over all possible k paths from the l;to j nodes. The
cofactor Lij, is the determinant with the loops touching the k" path removed.
The determinant A is:

N M, Q
A:I-E L+ E Lqu-E L L.L,+--. (C-3)
n=1 m=1, q=1

where L a equals the value of the q" loop transmittance. Therefore, in words,
equation (C-3) signifies that & = 1 - (sum of all different loop branches) + (sum
of branch products of all combinations of two non-touching loops) - (sum of the
branch products of all combinations of three non-touching loops) + . . . . Two
loops are non-touching if they do not have a common node.

C. ILLUSTRATION OF MASON'S LOOP RULE:

Consider the following flow graph:

OUTPUT
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There are five forward paths connecting the input to the output:

P = H, H, H; H,

o
1

H, G, H, G,

U
I

H, G, H, H,

g

li
e

oot
I\

ju ]
©

o
w

P, =H 5
There are four self loops:
L, =H H, G,
L, = H, G,

Loops L, and L, do not touch. Therefore,the determinant is:

Azl—(L1+L2+L3+L4)+(L1L2)

(C-3)
(C-4)
(C-5)

(C-6)

(C-7)

(C-8)
(C-9)
(C-10)

(C-11)

(C-12)

The cofactor along P, is obtained by removing from A the loops that touch P :

47
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The same applies for P,, P,, P, and P:

py=1-0=1

Ay=1-0=1

A,=1-0=1
A =1-1,

.a.nd therefore,

T.

F.

P&y + Py 8 + Py A + P, A, + Py A
) A

= (H, HyH, H,) +H, G, H, G, + H, G, H, H, + H, (1 - H, H, G;)

1-(H, H,G, +H, G, +H H, H, G, + H, H; G) + H, H, H, G, G,
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APPENDIX D

THE NYQUIST CRITERION

A. CONFORMAL MAPPING, THE ENCIRCLEMENT THEOREM:

If the variable s, in the Laplace domain, assumes real and imaginary parts
as follows:

S0 +1w (D-1)

(where i =/-1), then the characteristic equation:in s also assumes real and
imaginary parts given by:

F (s, e$)=U (o, w) +1iV (0, o) (D-2)

According to the theory of complex variables, a conformal mapping from s to
F is defined as follows. -To any point (o, «) in the s-plane, there corresponds
a unique point (U, V) in the F-plane. If the point (o, w) traverses a closed con-
tour C in s then (U, V) will trace a corresponding contour, " . Figure 6a illus~-
trates such mapping. Accordingly, the Encirclement Theorem states that when
C is traversed once clockwise by a point (o, ) then the corresponding mapped
point (U, V) revolves N times counter-clockwise on I' in Figure 6a, such that,

N=_2Z | (D-3)

where Z is the number of those roots of equation (D-2) which lie within C pro-
vided that none of them lie on C itself. A negative N indicates that I" is tra-
versed in clockwise fashion, while a positive N indicates a counter-clockwise
direction. A complete proof is available in Reference 42.
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B. THE CONDITION ON THE s-PLANE FOR ASYMPTOTIC STABILITY

The condition for asymptotic stability, exposed in Section IVA, requires that
all the roots of the characteristic equation to have negative real parts and there-
fore to lie in the left-half of the s-plane in Figure 6a. This is briefly explained
as follows. The response of a linear stable system to an impulse function must
tend to zero as t »~ ©, as stated in Section IVA. This response is generalized as:

(o tiw )t e(02+iw2)t

+A2

- A e(U"\&im")t (D-4)
(1=v-1)

y (t) = Al €

where A/, A, ... A are constants and (@, +iw ), (@, 1wy «ouy (o +iw)
are the complex roots of the characteristic equation (D-2). It can be seen from
equation (D~3) that if the o’s are negative, then y(t) decays exponentially thus
satisfying the requirement for asymptotic stability. Abiding to such prerequisite,
one cancels all possibilities for unstable roots to lie in the left~hand plane. This
leaves only the w —axis and the right-hand s-plane in Figure 6a to examine for
unstable roots. The general contour C then specializes to a newcontour, C!',
which is shown in the left portion of Figure 6b. It consists of the whole imaginary
axis between w =~ to w=+, along with the infinite semi-circular arc en~
compassing an area to the right of the direction of the arrow, namely, the com~
plete, bounded right-hand plane.

The conformal mapping of this semi-circular closed contour C' onto the
F-plane produces a closed I" contour. First, one considers the semi-circular
arc portion (excluding the » axis) of C' on which s can be written in terms of
polar coordinates as:

s = Reif (m/2>6 > -m/2) (D-5)

where R = infinity, i = /'~1. The mapping of this portion onto the F-plane gene-
rates a clockwise " portion which also bounds the entire right hand F-plane
with the imaginary F axis. The equation of this " portion is immaterial since
every point on it is at an infinite distance from the origin. It can be taken as a
semi-circle with infinite radius. It is referred to as part of the F-locus at in-
finity. Returning to the s-plane, the imaginary s-axis remains to be examined
from s=w=-wtos=w= +w, Depending on F, the mapping produces various
loci which then connect with the part of the F-locus at infinity to form a closed
contour. The area enclosed depends again on the direction of the arrows on I".
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C. THE NYQUIST CRITERION:

The Criterion basically combines the requirements of section (A) with those
of section (B) by determining the number of roots which reside inside C' of the
s-plane in Figure 6b, (i.e. those roots with positive real parts and therefore
those which cause instability). It can be stated as follows:

According to the Encirclement Theorem, the number of times, N, that the F-
locus encircles the origin in a clockwise sense corresponds to the number of
roots within C' in the s-plane, i.e. those roots with positive real parts and which
cause the system to be an unstable one, according to the stability condition on
the s-plane. Therefore, if the F-locus never encircles the origin completely,
then the system is (asymptotically) stable, and unstable otherwise.

D. ILLUSTRATION:

The previous criterion is best illustrated as follows. Consider the charac-
teristic equation containing one pure time delay as:

F (s, es)=s +Ke 5=0 (D-6)

where K is an arbitrary constant.

The mapping of s onto F(s, e*®) consists of two parts. First, the semi-
circular portion of C! in the s-plane is represented by Equation (D-4). As
previously stated, the F(s, e ®) contour corresponding to every point (o, w) on
that section is itself a semi-circular curve traced at an infinite distance from
the origin. It is shown in the F-plane drawn in the right portion of Figure 6b
and labeled | F(s, e®)|=®. The second part of the mapping traces F (iw, e'*)

s in equation (D-5). The result is
iwt+Keilwe=p (D-7)

Since e “i® = cos w - i sin w, one separates the real and imaginary parts of
equation (D-6) to yield:

51



X, (v) = Real F =K [cos (D-8)
Y, () = Imaginary F =K [i (w=-sin w)] (D-9)

For every  on the imaginary axis of the s-plane, there corresponds an ordered
pair (X, (), Y, («)) on the F-plane. Numerical values are calculated for X,
and Y, for a varying «. The result is the mapping of wonto F. It is shown as
the 'wiggle-like' portion along the imaginary axis of the F-contour in the right-
hand portion of Figure 6b. One notes that three curves appear each correspond-
ing to a different value of K, namely 1.0, 7 /2, and 2.0, respectively. All three
curves connect with the semi-circular portion of F labeled | F(s, )| =® at
infinity. The mapping, called the Nyquist plot, therefore completely encloses

an area to the right of the direction of the arrows (shaded in Figure 6b) in F.

It can be seen that for K = 2 the F~locus encloses the origin twice in the
clockwise sense, once very close to it and another time very far from it at
R = © gso that N = -2 and therefore Z = -N = 2, indicating two roots with positive
real parts in C'. The cases for K = 1.0 and /2 on the other hand reveal no
encirclement and therefore constitute stable cases. The value K = /2 is at the
threshold of stability. It represents the largest allowed value for stability.
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APPENDIX E

LISTING OF THE COMPUTER PROGRAM DEVELOPED TO IMPLEMENT
THE SATCHE CRITERION FOR MULTIPLE DELAYS AND TO PERFORM
COMPUTER GRAPHICS

A. THE SUBROUTINES USED:

The following program is written in FORTRAN IV. The implementation
utilized an IBM 360/91 operating under Release 20, a relatively high speed,
large memory machine.

Subroutine SCAN determines the intersection points while subroutine
SATCHE converts the numerical results into a special code which is transferred
on a 9-track magnetic tape. This tape is then mounted on a CALCOMP 780
(California Computing) System which in turn draws the desired plots on a drum
using ink and paper.

The subroutines PLOTS, PLOT, LINE, NUMBER, SCALE, and AXIS are
made available by the CALCOMP company and assist in drawing the plots ac-
cording to a desired scale, format and size. CALCOMP also provides a ‘
repertory of symbols, letters, and other characters which label the

diagram.

B. LIST OF COMPUTER SYMBOLS IN CONTEXT WITH THE MAIN
WORK (IN APPROXIMATE ORDER OF APPEARANCE):

X1 = X, («) = Re F,

X2:x2 (a)) = Re F2

It

Y1 =Y, (&) = ImF,
Y2 =Y, (w) = ImF,

BUFFER = A dummy vector used as a "'scratch pad' by subroutine
SATCHE. '
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OMEGA = a vector confaining all the values for w.

B = a vector containing the feedback factors, b,, in order of ap-
pearance in the network forward flow.

T = a vector containing the exponents of the delays in order of ap~
pearance in the network forward flow.

PI =7

PIB = selected maximum value for .

DPIB = selected increment value for w.

I = subscript for OMEGA, XI Y1, X2, Y2 initially set at 1 and

finally set at 513.

NFMAX = selected maximum number of computer runs per batch.
(one run per delay case)

NFILE = file number assigned to each case, initially set at 1 and finally
set at NFMAX.

M = number of pure time delays in the particular problem being
processed.

XK = K = management control

TAU1 = 7, = time lag

MM = dummy subscript

N1, N2, N3, N1 MAX, N2MAX, N3MAX = various pointers of secondary im-
portance used to produce a convenient output format.

w = an intermediary value for OME GA.

XDPI = an increment smaller than DPIB (of secondary importance)
XT = a temporary value for T

XX2 = a temporary value for X2 initially set at 0

YY2 = a temporary value for Y2 initially set at 0
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K = a dummy subscript

TEMPX2 = another temporary value for X2

TEMPY2 = another temporary value for Y2

wP = a value used to transform « into a fractional part of 7 to be-
come readable in the output printout.

N = a code indicating '"intersection' or 'no intersection."

IMAX = 513 = maximum number of values for X1, Y1 and of OMEGA
used to evaluate X1 and Y1.

JMAX = 513 = maximum number of values for X2, Y2 and of OMEGA
used to evaluate X2 and Y2.

IIMIN = subscript of the OME GA corresponding to w,, the smaller

: value at which one of the outermost intersections occurs.

IIMAX = subscript of the OMEGA corresponding to «, the larger value
at which the other outermost intersection occurs.

J = temporary subscript

ID = the number of values of OMEGA for F1, X1 and Y1 on F1
between the outermost intersections.

IITMIN = subscript of a reconstructed OMEGA for F1, X1 and Y1 with

the subscript ID =1 to ID = IIMAX ~ IIMIN. This is necessary
so that the curve F1 and F2 have the same order of magnitude
when the Satche diagram is performed.

SUBROUTINE SCAN: (additional symbols to the above)

D = distance between (X1, Y1) and (X2, Y2).
DMIN = smallest distance between (X1, Y1) and (X2, Y2),
JX = subscript identifying the point (X2, Y2) closest to the given

point (X1, Y1).
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SUBROUTINE SATCHE: (additional symbols to the above)

XL, YL = values specifying the paper area on which the Satche diagram
is to be drawn.

XSUBX, YSUBY, YSUBX, XSUBY = CALCULATED origin of the Satche dia-
gram. (Optimized values such that the diagram is centered
within the area specified by XL, YL).

D = a temporary value used in the above optimization.
JJ, NN = dummy subscripts.
XN = a value used for proper format (of secondary importance)
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c

C NYQUIST-SATCHE DIAGRAM
DIMENSION X1(600), X2(600) +Y1{600 )s Y2(600) s IUFFIR(7500)+ OMEGA(£00)»

18(10),7(10)

[alNa N

SETTING UP A WORK AREA FOR PLOTTING
CALL PLOTS(BUFFER, 7500,0)

[sNalasNale)

CONSTANTS DEF INED
PI=3.14159 )
PIB=PI
OPI=16.%16.

o000

READING THE NUMBER OF COMPUTER RUNS DESIRZI)
READ (Ss77) NFMAX
77 FORMAT(12)

DO 888 NFILE=1,NFMAX

READING IN ORDER THE DESIRED NUMEBER OF RUNS,

FEEDBACK MULTIPLICATIVE FACTORS, AND THE EXSONENTS OF THE

PURE TIME DELAYS.

READ (5+99)INFILE oM oXKeTAUL» (B(MMIMM=1,5) (T (M¥),MM=1,5)
99 FORMAT(12,11,12(F5.2))

[a a2l

1=1
771 WRITE(6s1 INFILE M oXKsTAUL 2 (BIMM)sMMTL45) s (T(MM) s MM=1,5)
1 FORMAT(*1%:///¢3Xs
‘2¢COMPUTER RUN NUMBER *,12, 9X ,*SATCHE DATA GENZRATION®/, 3Xs
7'THE NUMBER OF DELAYS IS *,12s/ 3X»
8¢ THE CONSTANTS ARE 1! +/3X,
1ek=" SsFB.3.EX, ' TAUL=? WFBa 34 /743X
39B(1) TO BIM)2',S(FB8e3,2X) s/ 43X,
S'T(1) TO T(M):* ,S5(F8.3,2X))

772 MRITE(6,+3)
3 FORMAT(//»4X, *OMEGA OF F1'48Xs*FE F1*'+10X,
1°IM F1?,10Xs*RE F2',10Xe'IM F2%, 9X,'CMEGA OJF F2')

THE NEXT TWO STATEMENTS ARE USED FOR A
DESIRED PRINT=FORMAT .
N1=1
NIMAX=26—( M*2)
773 w==PI
XDOP I=(PI/DP1) /2.
c GENERATION OF F(S) .
4 X1(1)==TAULAWH#2
. 61 Yi(I)=W
C GENERATION OF F(EXP( S)),THE CURVE WITH DELAYS. ~
XT=T(1)
XX2=0e

[aNa N3]
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YY2=0.
DO 67 K=1,M
TEMP X2=8(K ) XxXK*COS (X T*W)
TEMPY2=B(K) *XK*xSIN(X T*W)
IF(K=-M) 69:,68,68
69 XT=XT#+T(K+1)
68 X2(I)==(XX24TEMPX2)
XX2=-x2(1)
Y2(1)=YY2+TEMPY2
yya2=v2(1)
67 CONTINUE
WP=256.%W/P1
OMEGA( I )=wP
777 WRITE(6,2) WP X1(I)sYI(I}aX2(I)»Y2(I) oWP
2 FORMAT(3X,F6e1,4'/256 PI*,5X,4(1PE1043+5X)19PF6.1,/256 PI1*)
IF(N1-NIMAX)8,10,1C
10 N1=0
WRITE( 6,1 INFILE sMoXKeTAUL s (B(MM)sMM=1,5) 3 (T(MN)yMM=1,5)
WRITE(6:3)
8 N1=N1+1 ‘
88 IF((W+XDPI)=P1B)12,9,9
12 1=1+1
7 W=W+PI/DPI1
GO TO 4
9 CONTINUE
19 WRITE( G691 INFILEWM oXKsTAUL ¢ (BIMM),MM=1,5) ,(T(NN)sMM=1,5)
97 WRITE(6,23)°
23 FORMAT(/,3X,*FINDING ALL POINTS (F INTERSECTICN')
$6 WRITE(6,20)
20 FORMAT(/,3X,'0BSERVE THE FOLLOWI N CODES BILOW',/ 3X,
1°N=0 : NOT A REGION OF INTERSECTION',/,3X,
2'N=1 : A REGION OF INTERSECTION')
95 WRITE(6,21)
21 FORMAT(//v4Xs *OMEGA OF F1%,6Xs "RE F1 ',8X,
T'IM F1', BXe'RE F2%,08Xs "IM F2°', 7X,1OMEGA JF F2%,4X,'N’)
98 IMAX=1
JMAX=1
I IMAX=0
1IMIN=999
N2=1
N2MAX=1G=(M%2)
DO. 32 [=1,IMAX .
CALL SCAN(TI oX1(1),VY1(1) X2,Y2Nysis JMAX)
24 WRITE(6+26) OMEGACI) +X1(1)a¥Y1(I) X2(J)sY2(J)CNEGA(J) N
26 FORMAT(3X,F€el, /256 PI'43X48(1PE1D0.3+3X)+IPF6414/256 PI*,2X,12)
. IF(N2=N2MAX)30,31, 31
31 N2=0 ) .
WRITE( G641 INFILE M sXKeTAULy(BIMM)oMM=1,5) (T (MN) s MM=1,5)
WRITE (64+221)
WRITE(6,20)
WRITE (6,21)
30 N2=N2+1
LOCATING THE OUTERMOST INTERSECT IONS.
45 IF(N) 32432,27 . :
27 IF(I-1IMIN)29+25.:34
29 IIMIN=1
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NBEN)
34 IF(I-1IMAX) 22,33,33
33 1IMAX=1
J2=9
32 CONTINUE
WRITE(6s1 INFILE +M oXKsTAUL s (B{MM)sMM=1,5) 4 (T(NMN),MM=1+5)
WRITE(6,35) .
35 FORMAT(//,3%,* THE OUTERMOST INTERSECTIONS OCCUR AT!)
WRITE(6,3)
WRITE(6,2) CMEGA(IININ)le(IIMIN).Yl(IIMIN)-
1X2(J1),Y2( 1), CMEGA( U1}
WRITE(6,2)OMEGA(II MA X) 4 X1 (1 IMAX) oY1 (IIMAX),
1X2(J2) Y20 J2) s CMEG AL J2)
CHECKING IF F2(w) IS QUTSIDE F1(%) FOR THE RANGE
OF OMEGA OF F2 VARYING FROM OMEGA SUB ITIMIN TO
OMEGA SUB 1IMAX
WRITE( 691 )NFlLE.ngKoTAUlo(B(MM).MM:l.5)o(T(NN).NM=l-S)
WRITE (6,40)
40 FORMAT(/ +3X,**4CHECKING IF F2 C(F OMEGA SU3 IIMIN THROUGH® s/ s3Xs
1'F2 OF OMEGA SUB IIMAX LIES OUTSIDE OR INTSRSECTS Fl¥%!)
WRITE(6,20)
WRITE(6462)
62 FORMAT(3X,
1'L==1 ¢ X2 IS TO THE RIGHT OF F1 UNSTABLE ZASE'+/+3Xs
2'%L=1 : F2 INTERSECTS F1,UNSTABLE CASE?.+//3X,
3'L=0 : F2 IS OUTSIDE OF F1,STABLE CASE")
WRITE(6,55) :
S5 FORMAT(//+6X, 'OMEGA OF F19,6Xe*RE F1's8X,
1'IM F1*, BX,'RE F2 ¢, 08X, *IM F2%, 7X,'OMEGA JF F2' s4Xe N’y 3Xs'L")
N3=1 .
S N3MAX=18-(M*2)
DO 51 J=IIMIN,ITIMAX
44 CALL SCAN(CJsX2(J)s Y2 (J)eX14Y1 oNs I, TMAX)
IF(N) 46,46547
47 L=1
52 WRITE(6+53) OMEGA( 1) sX1(I)s¥1(I) X2(J)s¥2( 1),
4OMEGA(J }oN L
€3 FORMAT(3XsF€os1+'/256 P:'.ax.A(xpexo.a.sx).):Fs 17256 PI*42Xs12,s

o000

12Xs12+% UNSTABLE®)

GO TO 56
46 IF(X2(J)=X1(1))71+71 472
72 L==1

'R[TE(6v53) OMEGA( I) oX1CID oY1 (I) 4Xx2(J)sY2( D),
4OMEGA(J ) eN»L
GO TO S6&

71 L=0
49 WRITE(6,48) DMEGA(l)ch(I)ch(!)oXZ(J)vYZ(J)’
4OMEGALJ) sNsL
a8 FORMAT(BXoFéol-'/Z‘G Pl'oBX;O(lPElO-303X)-)DFo.la'/256 PIt,2X 12y
. 12Xe12s* STABLE')
§6 IF(N3-N3MAX)S4,€a, €ca
64 N3=0
WRITE( 6,1 )NFILEchXKnTAUl-(B(MM);MM 1.5);(T(NN)0*M—1.5)
WRITE(6+40)
WRITE(6,+20)
WRITE(6+62)
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WRITE( 60.55)
54 N3=N3+1
S1 CONTINUE
c PREPARING THE CALCOMP DIAGRAM
TITMIN=TIMIN
IO=1IMAX=1IMIN
D0 S50 I=1,1I0
X1{I)=X1{TIMIN)
YI{I)=Y1(IIMIN])
TIMIN=T IMIN+]
50 CONTINUE
CALL SATCHE‘xlelOXZIYZOID s JMAX s BUFFER 9o XK s TAUL o NFILES
1Bs T4 ITIMINLIIMAX)
888 CONTINUE
CALL PLOT(0es049999)
899 STOP
END
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SUBROUT INE SCAN(I s X1 oY1 sX2sY2 sNs JX o JJMAX)
DIMENSION Xx2(1),Y2(1)

C. SUBROUTINE USED TO FIND POINTS OF INTERSECTIGN OF
[ TWO CURVES.
DMIN=99G,

DO 3 J=1,JMAX
D=SORT((X1=X2(J))*#24+(¥Y1-Y2(J))%42)
IF(D=-DMIN)2+2,3
2 DMIN=D
Ix=J
3 CONTINUE
IF(DMIN=04+025) €46, 7
7 N=0
RETURN
6 N=1 ' . .
RETURN
END
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[a N g]

10

20 SATCHE

DATE = 72214

SUBROUTINE SATCHE( X1 ¢Y1 sX2:Y2:Js 10BUFFERy My XKy TAUL s NFILE »Bs

1TSIIIMIN, I IMAX)

DIMENSION X1(1)oY1(1)sX2(1)4Y2(1),BUFFER(1)+B(1)},T(1)

XL=9.

YL=Te .

CALL PLOT (e5+¢5:23)

CALL SCALE(X2¢XLs1 91)
X1(J+1)=X2(I+1)
X1(J42)=x2(142)

CALL SCALE(Y2,YLsI 41)
Yi(J+1)=Y2(1+1)
Y1(JI+2)=Y2(1+42)
DETERMINING ORIGIN OF AXES FOR X2,Y2
(LOCATING HEIGHT OF X=AXIS)
XSUBX=0.

IF(Y2( 141)=0e) 14242
XSUBY=0.0

GO YO S

D=Y2( I+1)+YL*Y2(1+2)

IF (D+Qe¢) 3¢354
XSUBY==Y2(1+1})/Y2( 1+2)

GO TO S

XSuBY=YL .

LOCATING WIDTH OF Y-AXIS
YSUBY=0. N
IF(X2(141)=0e)€474 7
YSUBX=0.

GO TO 10

D=X2( I+1)+XLEX2(1I+2)
!F(D-o-)a. Boll
YSUBX==X2( 1+1)/X2( I+2)
GO TO 10

Y SUB X=XL

CALL AXIS{XSUBXeXSUBY,"

C1XLe0es X20T141) 4 X2(142))

12

CALL AXIS(YSUBX,YSLBY,®
1Y2(141),Y20342))

CALL Llij( X29eY¥2+1415040)
CALL LINE(X1+sY1+Js1s43,03)
110=1IMAX=-11IMIN

DO 12 JJ=1,110

X2(JJII=X2( ITIMIN).
¥2(39)=Y2( 11IMIN)
ITIMIN=ITIMINGL

'CONTINUE

X2(JJI+1)=X2(1+1)
X2(JI42)=X2(1+2)
Y2(JI+1)=Y2(1+1)
Y2(J5+2)=Y2(1+2)

CALL L INE( XZ-YZ.J:J 11e=3,11)
CALL PLOT{YSUBX4#0e 20 +YL+23)
CALL PLOT(4+48+0es22)

CALL PLOT(Oes=1e1,22)

CALL PLOT(=4.8¢0es22)

62

REAL F1,F2¢,=32,

IMAG F1,.F2¢ +2593¥L 190 s
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15

20 SATCHE DATE = 72214 16708/ 18

CALL PLOT(O0esle1422) ,

CALL SYMBOL(0.15¢=0e25+0415,22HSATCHE DIAGIAM 00 +422)

CALL NUMBER (1¢69=0e44¢0s19XKs00s2)

CALL NUMBER(24:74=0 ¢4 +0s14TAUL 404 +2)

CALL SYMBOL (2.8+~0.2550410+17H=CELAY(S) PIIBLEM+D4+17)

CALL NUMBER(2.700+=042550e10+sFLOAT(M) 40es—1)

CALL SYMBOL(0.15,-0e@40e1 ¢30HCONSTANTS: K= » TAUL= +Qes30)
CALL SYMBOL(0O+15:=0¢S5,0.10+43HTHE EXPONENTS FGF THE PURE TIME DEL
1AYS ARE:+04,43) . .

CALL SYMBOL(0e¢1S5S,~0.85,0.1,45HTHE FEECBACK ZOEFFICIENTS FOR THE DE
2LAYS ARE:+04+45) -

XN=0«

D014 NN=1,5

CALLNUMBER (O 1S+XN 4= 047 301 s TINN )00‘-’ o1)

XN=XN+0.8

CONTINUE

XN=0.

DO 15 NN=1,%

CALL NUMBER(O¢1S54XNs=10s30e¢1 +B8(NN)sOesl)

XN=XN+0.8

CONTINUE -

CALL SYMBOL{1:2+=647+0s1+27HCALC CMP CCMPUTZR—=DRAWN PLOT 50 ¢ 27)
CALL SYMBOL (1e2¢=~€s85,041+37HPR CGGRAM=PLOT OESIGN : JACQUES PRES
1S¢044+37) i .

CALL SYMBOL (1424=7+00+0e1+12HDATE: 8/1/72+044+12)

CALL PLOT(=4,0+=0.2,3)

CALL PLOT(=3.7Cs=0.2.2) i

CALL SYMBOL( 43,65, =0¢25+0.10Cs27HF(EXP(S))ICURVE WITH DELAYS,
10,279 . ) _ .

CALL SYMBOL (=84 0=0+65+0s1,30H44++ F{S):CURVE WITH NDO DELAYS+0 s 30)
CALL SYMBOL(~4, =1 .05,0.1,37TH*k%# PART OF (EXF(S)) CORRESPONDING
1,0.437) ’ ‘ ’

CALL SYMBOL(~3.65,=1220+0.1,28HTC OMEGA OF F(S) BCUNDED BY. 40 . 28)
CALL SYMBOL(~3+65s=1 ¢35:041+28HI TS OUTER INTERSECTIONS WITH,0 .4 28)
CALL SYMBOL(=34654=145040e1 s9HF (EXP(S)) 404 +9)

CALL PLOT(10s¢=7¢5 o= 23)

RETURN

END
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APPENDIX F

THE MATHEMATICAL FUNCTIONS USED IN THE CSMP SIMULATION
(SEE FIG. 17)

Computer Notation

Mathematical Notation

P = DELAY TIME

N = NUMBER OF POINTS
SAMPLED IN INTERVAL P
(INTEGER CONSTANT)

DEAD TIME (DELAY)

Preceding paée b_Izﬁlk |

65

~A. Y=STEP (P) Y=0 t<P
(STEP FUNCTION) Y=1 t>P
B. Y=REALPL (IC, P, X) PY=Y=X
Y(0) = IC ( 1 )
(SIMPLE LAG) Ps+l
' t
C. Y=INTGRL (IC, X) Y = J X dt + IC
(]
Y (0) = IC 1
- s
(INTEGRAL)
D. Y=DELAY (N, P, X) Yt)=X(t-P)t>P

Y=0 t<P

(e°P)



BLOCK

AN INTEGRATOR
dx INPUT FOR OUTPUT
- —— (a rate o > x(t
dt ( ) EXAMPLE (t)
fdt
Figure 1a. The mathematical box as a component of a system.
7/ NReweNT7
1 T
1
te—— DECISION-MAKING ———| FORWARD FLOW
: SECTOR !
|
7|REFERENCEY|NPUT-FEEDBACK) : CONTROLLED [77
INPUT - [CONTROLLING]_, [ PROCESS | _OUTPUTE~~
% '+ FEEDBACK VARIABLES WITH DELAYS
, FEEDBACK
FEEDBACK FLow L _ELEMENTS

ENVIRONMENT

S

Figure 1b. | A generalized feedback control system.
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INPUT OUTPUT

A‘
A .
——— _l_. ——
Ts+1
0 t 1st ORDER 0 t
TIME LAG
INPUT OUTPUT
A‘———
) A o __
— 2' —
T SetT,5t]
0 2nd ORDER o
t TIME LAG t
INPUT OUTPUT
Al -A ------
— e—Stl . tl
0 PURE TIME
t | DELAY 0 t

Figure 2. Various time lag and pure time delay transformation functions.
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INPUT OUTPUT

X
/ 0 —Xg(s)

1/s = INTEGRATOR K,a=MULTIPLICATIVE CONSTANTS
1

e¢~St1=PURE TIME DELAY ot =TIME LAG

Figure 3a. The network graph for a problem with one pure time delay.

F(s) Xg (s) X
—=Q=—H(s)=—#= QO —D(s) —=0O F—D-C‘\HD —>— O
~G(s) SIMPLY -G

Figure 3b. The algebraic diagram for Figure 3a.
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H1D1 H,D»

e

Figure 4a. A trivial extension to two pure time delays.

INPUT - OUTPUT

HoD
2.2 » OUTPUT

e

Figure 4b. The reduction of Figure 4a to two single delays.
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SINGLE FEEDBACK
JUNCTlON
H1D, H2D2

INPUT - QUTPUT

RN

_G2

Figure 4c. The non-trivial extension to two pure time delays.

SINGLE FEEDBACK

JUNCTION HD HoD H3D H4D HND
1D1 202 3D3 4Da . NDN
J T

L |
{ .
' I
|
| G |
\ J |
e _ e ,//}
""" /
/

Figure 4d. The general non-trivial extension to N-pure time delays.
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PADE TABLE FOR ¢*

z? zr 2
% l;z 1—z+§-| 1 $+§1 3
1 1
1 2 128 3 221 123
1 1-3= 1-32+33 1 =+m‘m
14z 1 1
1+§z 1+§z 1+Zz
1 1 12zt 3 3 2? 1
— 1-3= 1-32+55: 1‘5’+E?‘Eﬁ
l14z4+%5 2 1z 1 122
2 1+32+33 1432 +53i 1432+ 55
N 1 2 1 22 1 1z 1 23
! 1-3= 1 -5+ 1530 1'5‘ 521 ~ 203
1+::+ + 2z 12 3 3 zt 123 1z 1 23
7t 1+3=+iaitag 1+32+ 1521 w3 L+3%+55 +355
1 1 1 z* 3 1z 1 23
——— 1-5° ' 3%t “7”75—35&
l4zt+55+5+5 4 3z, 22  1z¢ 2 22 123 1zt 2 a* 4 z? 1 z¢
ATV | tdhgerintinten | 1Firtanitasitia | 1tittiaitmsitema




t 1 - (UWY)

2

(8,w) s -PLANE : ' y

N v \ /PLANE

Figure 6a. The conformal mapping from the s-plane onto the F(s, e®)-plane.

ReF
e5)
-
s-PLANE
W= —o00 /

(SPECIALIZED s-PLANE) —K=]
/ —=K=7/2

A\ ——-K=2

J = F-PLAN
WS e “NF(ses) = | ANE

Figure 6b. The Nyquist plot for F(s, e5) =s + e~ % =0,
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(A,B are moving points)

IMAGINARY Fy ,Fo

By

INTERSECTION OF ., 4
F1 AND F S35
1 2 A3 /-*é//z

F» LOCUSE

INTERSECTION OF \
F1 AND F» X5

—————— F, (e%): CURVE WITH DELAYS omeemgp- RESULTANT VECTOR AB

—~——-==— F;(s): CURVE WITH NO DELAYS 77771 AREA ENCLOSED BY F,

*(an area is enclosed if it lies to the
right of the arrow on the locus)

+¥] AREA ENCLOSED BY F,

Figure 6c. The Sotche diagram.
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147

UNITS/TIME
ENTERING
THE SYSTEM

MANAGEMENT SECTOR | RATE

PROCESSING

DATA }DECISION-.
| MAKING
CONTROL t

Y—— TIME L. INTEGRATOR et

l-——-'-_____.-________ &

4

==

T, s+1 s
FEEDBACK
FACTOR

— bl - e e e e e — — e —— — —— — — | ——— — ——— — — — — — —

UNITS

UNITS

DELAY
S ¢
ﬁ 1st LEVEL
INDICATOR
(e -St1) FIRST i
DESTINATION
POINT

2nd LEVEL
INDICATOR

| FINAL
SERVICE DESTINATION

FEEDBACK COMPLETED <—T POINT
FACTOR

-

W —
t o]
>t

<e —Stz)
MATERIAL FLOW
o= em e o= |[NFORMATION FLOW

Figure 7. A proposed model for a network flow hindered by two pure time delays.
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Hy=K Hp=—1

1
H3=5 D,=esh D, = e~st2

INPUT T S+1 OUTPUT
> >0 »0 -0 >0 »0 —
X]I; X‘2 X3 Xa X 5 Xe Xy
Gy=—b;
Gy =—b2

Figure 8. The network graph for the model in Figure 7.
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COMPUTER RUN NUMBER 1
THE NUMBER QF DELAYS IS 2
THE CONSTANTS ARE:

K= 0.450 TAULl= 1.000
8¢(1) TO e(M): 1.000 1.000
T(1) TO T(M): 1.000 2,00
OMEGA OF F1i RE F1
-25640/256 PI -9.,870E 00

-255.0/256 P1
~256,07256 P1I
=-253,0/72%56 P1
-252,07256 P1
-251,0/256 P1

250.0/256 P1

~3.793E 00
~9.716E 00
=9 +.640E 00
=3+564E 00
=9+488E 00

1

L P T YT .
251.0/725%6 P11 -9+48T7E €O
252.0/7256 P11 =-3+563E 00
253.0/7256 P1 -9 +639E 00
254 ,0/7256 P1 =9.7T1SE 00
255.0/72%56 P1 -9+ T792E 00
256.0/7256 P1I -2 ,869E 00

SATCHE DATA GENERAT ION

0.0
0.0

IM F1t
= 3s142E
~3.129€E
=3.117€
=3.1CSE
=3.063E
=3.,080€E

00
00
00
00
00
00

0.0 0.0
0.0 0.0

RE F2
9. 000E-01
8+ SSTE-O1
Be SE6E—-O1
€. S70E-01
Be S46E-01

513 LINES ACTUALLY PRINTED
(COMPRESSED HERE TO SAVE SPACE)

3.080E
3.0S2E
3.1 CSE
3.117E
31 29E
J.14M1E

00
[ 1Y)
00
00
0o
00

o ve=
8.S15E=01
8+ S46E-01
84 969E=01
8¢ SE6E=01
8¢ GI7E~-01
9+ 000E=-01

IM F2
-6 +280E~-C6
=2.209E-C2
=4 .,413E~02
=6 461 7E=C2
~3.81 2E-02

E~01
1102E~01
8.837e~-02
6 +€4 3E=-02
4444 1E~C2
24235F=02
2.705E~04

IMEGA JF F2
=25640/256 1
-255.,0/256 21
—258,0/25%6 P
-2€3.0/256 31
-252.0/256 21

8. $15€~01 10700 -251.0/256 P}
-9.412E 00 -3.0€68E 00 8 "-—"—?‘—‘\""—-‘\\\_,f/"‘\_,——\il_/_~\_—//
9 . ~ ~ n L .

e «0/296 P1
251.0/7256 21
252.0/7256 P1
253.0/7256 21
2€4.,0/7256 21
285.0/7256 P1
25£6.,0/7256 21

NOTATION:

E-01 = x10™

RE F1 = REAL PART OF Fy = X,

IM F1 = IMAGINARY PART OF F =Y,
RE F2 = REAL PART OF Fz = X

IM F2 = IMAGINARY PART OF F2 = Y;

Figure 9. Computer output displaying the generation of numerical

values for Fi and Fo




LL

COMPUT ER RUN NUMAER 1
THE NUMBER OF DELAYS IS

THE CONSTANTS
K= . 00450

B(1) TO B(M)?
T(1) TO T(M):

FINDING ALL POINTS OF

SATCHE DATA

OBSERVE THE FOLLOWING CODES BELOW

N=Q 2 NOT A REGION OF

N=1 2 A REGION OF INTERSECTION

OMEGA OF F1

=256.0/7256 P1
=255.,07256 P1
=2%54,0/7256 P1I

-~859,0/256
-58,0/2%6
-57,0/256
=56¢0/256
~55,0/256
-%54,0/256
-53,0/2%6
-52,0/72%6
-51.0/256
-50.07256
-4€,07256
~42,0/256

=5+870% 00
«9+7S3E 00
=3716E 00

-Q o

~%,421E~01
~5.242E-01
~85,0662=01
-4.263€=01
~4.723€~01
-4e555E~01
—4.3615=01
~4,230E-01

‘T ~4.072E~-01

-3.917E-01
-3,76%E-01
-3.616E=01
-3,470E-01
=3,327€6-01

ARE?
TAUl= 1.000
1,000 1.000 0.C
1.000 2.00¢C 0.C
INTERSECTION
INTERSECTION
RE F1 iM F1

=32.1426 00
=3.129€ 00

o)

(SPACE SAVING)

~T7e3€3E~-Cl
=-7+.24CF~-C1
~7+118€~C1
=6eGSEE~-CI
~€sET2E~ (1
-Ces 749~ (1
=Ce62TE=- 01
=€+ SCAE=C]
—-€e IFLE-C)
-6s28%9E~ 01
=€s136E~-CT

-€+013E-01 -

=S.8S0E~ 01
< ]

0.0
0.0

'

RZ F2

=8.665E=01
=8.665€-01
-8-§6SE-01

- VN }
-8.9765=01
-4 ,789E=01
-4.789E=01
-4.600€E=-01
-4,410E=C1
-4,410€=01
-8.218E-01
-4.219E~01
-4 .026E=01
«3,933E-01
-3.833£=01
=3.,633€E=-01
«3e44S5E~

GENERATION

040
0.0

Iv F2
=2.170:=01
-241703-01

=6e 376U
-6e3703=01
-654457 =21
~6.457 3:~-01
~6¢5313:-01
=64600:-01
~6660:-01
=6e6313:I=01
«64661 301
-647173=21
-6.7663-91
-6675€:-01
-6.808:-01
i=21

OMEGA DOF F2

=10407256 P1
=10407256 P1

LL.a27 25¢6

N
0
0
Pl 0 "
: (ALL ZEROS)

=) 7 c26
=37.C/7256
=~38.0/256
=3t +0/2506
=3¢ 40/256
=40 «0/ 256
=40 +0/.2506
-81./7256
—41.07256
-8Z 07256
—43.C0/7256
=43.0/7256
-84 407256

Figure 10. Computer output displaying ‘where Fl and F, intersect numerically.
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CMEGA NF F1

-46.0/256 P1
-45,0/256 P1
-44.0/256 P1
-43.0/2%6 P1
-42,0/256 P}
-41,0/2%6 P1
=40,07256 P1
-39,0/256 P1
-38,0/256 P1
=-37.0/256 P1
-36.0/256 P1
-35.0/7256 P
~34,0/7256 PI
=33.,0/256 P1

|
|

RE F1
-3,137S=01
=3.049€E=-01
-2.315E=01
-2.784E-01
=24656E=01
=2.531E=-01
~2.409E-01
=2.290E~01
~2+175E-01
-2.062E-01
=1.952E-01
=1+345€=01
-1+741E-01

[l
.
.

-4.0/72%6 P1
-3.0/72%6 P1
~2.07256. P
-1.072%6 P1

0.0/256 P1

2.072%6 P1
3.,0/7256 PI
4.,0/725%6 PI
5.0/7256 P1
6.0/7256 P1

8.0/256 PI
9.0/256 PI
10.07256 P1
1)1.072%6 P1
12.07256 P

107256 P11~

7.0/725%6 P1

=-2¢408E~-03
=1+3%4E~-03
=6 +018E=~04
=1¢503E=-04a
=1+451E~-10

~1509E=-04

-6+030E~-04
~1356E=-03
-24.411E-03
~32,766€E-03
~5,423E-03
=7+381€-03
~9.,641E~03
~14220E~02
—-1+5C6E=02
-1.823E-02
-2+16SE=-02

=1.€640E-01

IMm F1
-%,€E4SE=C1
-£,8228=C1
-2,4C0E~Cl
-2,277E-C1
—5.154E~-C1
=5,021E~C1
~4+9C9E-C1
~4,7€6E~Cl
-4, 6€3E-C1
-4,540E-C1
-4,4185=-C1
~4+295E~ 01
-4.172E-C1
-4,0S50E~Cl

-4.SCBE~- C2
=3.680E~-C2
—Z+453E- C2
=1e22€E~ 02
1.205€E-05
le228E~- 02
244%¢CE- C2
246€3E~C2
4.910E-C2
€e127E~-C2
7e3€4E- 02
8.5G1E~-C2
$.81GE~- 02
1.1¢5€E-C1
- 1e227E~01
1.3€0E~-C1
1.473=-C1

rE =2
-3.8458-01
-3.231E-01

. =1e9332€E-01

-1.,832£=01
~1.914E=01
~1.914€-01
~1.914E=-01
~1.914c=-01
-1.98%€E=-01
~1+989€E=01
-1.789€=01
-2,05S9E=-01
-2.053€=-01
-2e123F=:

(SPACE SAVING)

IM F2.
-6,844 301
=643T43-01
-4.7503=01
~4,750 =21
8,615 :-01
-4,6163=C1

~84613Z-01.

~3.61393-01
~44437 =01
-4.,437 I-01
~Q 4437 =01
~4.3533-01
-4¢353 J1
=-8,2173-921

=3t~-03 =€e12%E~ 02 L J 35 2o

Te143E~CE
Tel89E~=0 €
TelAIE=-OE
7.183E=-C6
Te14%E=0¢€
Te149E=-C6
T7e149E=0 €
Te1435-06¢
TelAIE=0E€
Tel489E~-0€
=1.101E~-02
=-1.101E-02
=-2.203E-02
=2+203E=-02
-3.,301E~-02
-4,392E=-02
=5474€E-02

VeO
0.0
0.0
0.0
060
0.0
Ce0
0.0
0.0
0.0
0.0
2.635:-04
2¢6353:=04

1.081:-03

1.031:2-03
244323-03
443223-03
£ T2 7 =03

Figure 10. (Continued)

OMEGA OF F2

-85.0/256
—-4€ .0/ 256
“177.07256
«177.07256
~176 .0/7256
176467256
-176.0/7256
176407256
~175.0/7256
~175.72%6
175407256
174 .,07256
=174 .0/256
'l 73 .3

75

«12€8 07 C
1268 .0/7256
~12€,0/256
-128+C /256
~128,0/256
«“12%.,0/256
~126 .0/ 2556
~12P .0/256
-126.0/255
~12F +0/256
~12€.0/256
125 .0/256
126 .C/256
13C .0/256

13C.C/256 .

131.07256
132.0/7256
133.0/7250

2z

P1
21
Pl
P1i
L ¢
8 )
)
21
PI
Pl
P11
PI
nl

O mw QOO COOLOOC

(ALL ZEROS)

P11
o1
Pl
o1
Pl
PpI
of
PI
P11
PI
Pl
PI
o1
Pl
Pl

OO0 0CODOCOOO O e b st = O
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OMEGA: OF F1i RE F1 IMFT RE F2 I F2 OMEGA OF F2 N
20,0725 Pl  =1.267E-01 3,559E=Cl1 =2.234E-01 3.9423-01 171.07256 P1 0
30.072%6 P1  =1.333E-01 3.682E-C1 -2.234E-01 3.9422-01 171.07256 P1 °
31.07256 P1  =1.447E~01 2,8C4E~C1 -2.181E-01 4.030:-01 172.07256 P1 0
32.0/72%6 P1  =1.342€6-01 2.927€-C1 -2.123E~01 4,2163=01 173.07256 P1 o
33.07256 P1  =1.640E-01 4,0%0E~- 01 -2.123E=01 4.2163-01 173.07256 P1 0
34,0/7256 PI  =1.741E-01 4.173€-0C1 ~2.059E-01 4,3523-01 174.0/256 P1 o
35,07256 P1  =1.845E=-01 4.265E-C1 =2.05%E=01 4.3523-01 17407256 P1 1
36.0/7256 P1  =1¢952E-01 4,418E~Cl -1.989E-01 4,4362-01 175.0/7256 P1 1
37.07256 Pl =2.062E-01 4,%41E- 01 ~1.989€E=01 4.4363-01 175.07256 P1 1
38.,07256 P1  —2.17%E-01 4, E€3E-01 -1.989E=01 4.4863-01 175.07256 P1 0
39.0/7256 P1  =2.291E-01 4.TEEE~CI -1.914E~01 4.6193:-01 176.0/7256 P1 0
40.,0/7256 P1° =2.410€=-01 ‘.gc9E:EL.__:};;;:E:SA————&‘QLEE-c‘ 176 .0/7255t 0
‘ l . o - » k] M

hd [
: : : (SPACE SAVING) : : (ALL ZEROS)

| " 5007256 ~

$1,0/2%56 P1
52.0/7256 P1
£3.,0/256 P1
54 .0/7256 P1
55.07256 P1
$6.0/256 P1

57.5.

~3,917E-01
-4.,072E=-01
-4.230E~01
~4.352E-01
-4.556E=01
-4.723E=-01
-8 .,863E=0"

254.0/72%6 P1
255.0/72%6 P1
256.0/7256 P1

-Qetton wv
=9«792E 00
~9.8609E 00

€.2%59€E~-C1
€e3E1E~-C1
€sSCAE- O}
€e627E-C]
6e7SCE~-C1
€sATPE~C1

—wsUZBE=-01

-4,218€E=-01
-4,218E=01
=4.410€-01
-4+410E-01

-4 ,600E=-01
-4

(SPACE SAVING)

- wceU/256 ~7
64661 :I-01 41.C/7256 P11
654661 3:=-01 41,0/7256 1
6+6003~01 40 .0/7256 P1
6¢600:=01 40 407256 P1
66532:-J1 3G 40/ 255 L
e

e ———

(ALL ZEROS)

Jet 1 rE’ CO
2.129€ O¢C
3.141E 00

=HebODE=V L
-8.,66SE~01
=B8+.665E~01

Cedi a "Vl
241712-01
24171:-01

10407256 P1I
10.,0/7256 °1
10.07256 P1

QoOocC

Figure 10. (Concluded).
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COMPUT ER RUN NUMBER 1 SATCHE DATA
THE NUMBER OF DELAYS IS 2
THE CONSTANTS ARE:

K=  0.450 TAUl=  1.000
B(1) TO B(M): 1.000 1.000 0.0

T(1) TO T{M): 1.000 2000 0.0

THE OUTERMOST INTERSECTIONS OCCUR AT

OMEGA OF F1 RE F1 IM F1
~55.0/7256 P1 =4 ,555€~01 =647 49E~-01
55,0/7256 P1 =4 +556E-01 647 S0E=-01 .

GENERAT ION

(=2 =]

.
o o

0.0
0.0

RE F2
-4, 41 0E-01
-4+ 41 0E~-01

IM F2

=6 +600E-01

6 +€00E-O1

Figure 11. Computer output displaying the numerical values at
the outermost intersections.

OMEGA JF F2
=-40.0/7256 P21
40207256 P1
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COMPUTER RUN NUMBER 2 SATCHE DATA GENERATION
THE NUMBER 0F DELAYS IS 2

THE CONSTANTS ARE:

K= 0e450 TAUL= 1.CC0O
B(1) TO 83(M): 1.CCC 1900 [+ ) 0.0
T(1) TO T(M): 1.0CC 2000 Ge0 0.0

*%CHECKING IF F2 OF DMEGA SUS TIMIN THROUGH
F2 OF OM=GA SUR TIMAX LIES OUTSIDE OR INTERSECTS Flkx%x

OBSERVE THE FOLLOWING CODES BELOW

N=0 : NOT A RFGION OF

INTERSECTION

N=1 : A REGION OF INTERSECTION

L==-1 : X2 IS TO THE RIGHT OF F1,.UNSTABLE CASE
L=1 ¢ F2 INTERSECTS F1l,UNSTASLE CASE
L=0 : F2 IS OUTSIDE OF F1,STABLE CASE

OMEGA OF F1 RE F1 IM F1 RE F2

~4440/7256 P1 —-2+€15E-C1 -54400E-C1 -1.54CE-0D1
-45,0/256 P1 =3.04GE-21 -54522E-C1 -1.724E-01
45437236 P1 -3.049E-01 -S4522E~C1 -1«G1CF-C1
-464D/255 P1 -3.187E-01 -5.64EE-C1 ~2.089€E~-C1
=-47,0/7256 P1 -3.3272-21 —Se768BE-C1 —-2.288F=0C1
-48,%2/7256 P1 ~3.470E-01 ~5.89CE-C1 ~2e¢479F=01
-48.C/7256 PI1 =3,47C0E-91 -5+890E-C1 -2+671E-01
-4G43/7236 P1 =3.616E£-01 -6«013E-C1 —2.8B64E-01
-5CsY/256 P1 = 3.7€8E-31 -6+136E=-01 -3.057€-01
-56G.0/72536 PI1 -3.7€55-01 -€e136E-C1 -3.251E-01
-51.0/7256 P1 =3.6175-01 -6.259E-C1 -3+.445€-C1
-52407236 21 ~4,(72E-01 -6.381E-C1 ~3.639E~C1
~52,07256 PI1 -4 JC72E-01 =-6,+3815-01 -3.833F-01
~53e0/256 P1 -4.,23CE-01 ~6.504E-C1 ~-4.C26E-C1

IM F2
~6.856E-01
-6.883E-01
-6.G603E-C1
-6.918E~-C1
-6¢926E-C1
-64928F~C1
-6.924F-C1
=6e914E~-C1
-6+8GT7E-C1
-6 A74F-01
-64B864E-C1
-6+808E~-C1
~6e756F~C1)
-6.,7176-C1

OMEGA 0OF F2

-5.0/256
-54.07256
-83.C/256
~52.0/256
~51.0/25€
-5C.0/256
-49.,0/25€
~4840/256
~47.0/256
-46.0/256
~85,0/25€
-88,06/256
~63.0/25€
~82,0/256

=3¢
PI
Pl
P1
Pr
Pl
Pl
PI
Pl
(23§
PI
PI
PI
P1

DOV O0OO0O0DOLOODOOODODOZ

LI O T A T A D Y IR A R T B |
P had s b bt ps b s et bt b b bt pes [

UNSTABLE
UNSTABLE
UNSTABLF
UNSTABLE
UNSTABLF
UNSTABLF
UNSTABLE
UNSTABLS
UNSTADLE
UNSTABLE
UNSTABLF
UNSTABLE
UNSTABLE
UNSTABLF

f— T — T T T

Figure 12. Computer output displaying regions of stability and instability.
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COMPUTER RUN NUMBER 2
THE NUMBER OF DELAYS IS

THE CONSTANTS

K= 04450

B(1) TO A(M):
T(1) TO T(M):

*kCHECKING IF
F2 OF OMEGA SuB

ARE:
TAUL=

1.0C0
1.CCC

1,000

1000
24000

SATCHE DATA GENERATION

OBSERVE THE FOLLOWING CODES BELOW
N=9 : NOT A REGICN OF INTERSECTION
N=1 ! A REGION OF [INTERSECTIDN

L==1 2 X2 IS TO THE RIGHT OF F1,.UNSTABLE CASE

L=
L=0

—

OMEGA NF F1

~53.07256
~-54,0/2556
~-55.6/256
~35423/256
=56.27256
-56.0/72356
-57.0/256
-57.07256
~57.072556
~5840/255
~58,37/7256
~-58.07256
-£9.07256
=-53.07/256

P1
P1
P1
PI
P1
PI
PI
PI
PI
PI
P1
P1
Pl
P11

RE F1

-8 ,23CE-01"

~4,3%1E-01
-4 ,5E85E=-91
-4 ,5552-01
~447235-01
=4 +723E-01
-4,8932-01
-4 ,B%3E-01
-4 .8935-21
~S.CEET-N1
~S.CEEE~-D]
~E4(€6Z-91
~5e2422-01
~5424232-91

F2 INTERSECTS F1,UNSTABLE CASE
F2 1S OUTSIDE OF F1,STABLE CASE

IM F1
-6.504E~C1
-6 .627E-C1
-6e749E-01
~6.749E-01
-6 +872F~-C1
-6e872E-C1
=~6+995E-C1
-6.995E-01
~6¢995E-C1
-7.118E-0C1
-7.118BE-0C1
-7.118E-C1
~7+240E-01
=7e240E-C1

0.0
0.0

o.o
2.0

F2 OF OMEGA SURB TIMIN THROUGH
IIMAX LIES QUTSIDE OR INTERSECTS F*%x%

RE F2
-4.,218E-01
-4.410E-01
—44600E~-01
-4 4789€-C1
-4 ,976E-01
-Se162E-C1
~5e345E-C1
-5.526E-01
-5.704E-C1
-5.88CE-01
-64C52E-01
~66222E-01
-64388E-01
-64551E-01

o0
o ®
[ 2o}

IM F2
—-6.6£1E~01
“6460CE~-C1
-6.531E-C1
-6+457E~C1
~-6+376E-641
-6+.28GE-C1
-6.1GE6E-01
—€.096F-C1
~5.991F-01
-5+879E-01
—C«762E-21
=5.639E~-C1
-S«51CE=-C1
~S¢376E-01

Figure 12. (Continued).

OMEGA OF F2

-41.0/256
~4C a0/ 256
~39.0/256
-38.G/25€6
~37.,0/256
-3640/256
-35,0/256
-3440/256
-33.¢/256
-32.0/7256
-31.0/256
-30.0/25€
-29.0/256
-28.C/256

PI
Pl
eI
Pl
PI
PI
Pl
PI
Pl
Pl
P1
PI
PI
Pl

DOV IODDOMDO rmwm2Z

'

PRI

DO O 00D

Dy DN

————— T ————, T N T N—

UNSTABLE
UNSTABLE
UNSTABLE
STABLE
STABLE
STABLE
STASLE
STABLE
STABLE
STABLE
STABLE
STABLE
STABLE
STABLE

———— T~ T T
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COMPUTER RUN NUMBEFR 2 SATCHF NATA GENERATION
THE NUMBZR 0OF DELAYS 1S 2

THE CONSTANTS ARE:

K= 0450 TAULl= 1.060
B(1) TO /(M) 1.0CC le00C OsC 0.0
T{(1) TO T(M): leCCC 2.C00 0e0 Qe

**CHECKING IF F2 0OF OMSGA SUB TIMIN THROUGH
F2 OF OMSGA SUR TIMAX LIES OUTSIDE OR INTERSECTS F1 %x%

OBSERVE THE FOLLOWING CODES BELOW

N=0 T NNT A REGION OF INTERSECTION

N=1 { A REGICN OF INTERSECTION

=~1 ¢ X2 IS TO THE RIGHT OF F1,UNSTABLE CASE
t=1 F2 INTERSECTS F1,UNSTASLF CASE

L=c F2 IS QUTSICE OF F1,STABLE CASE

OMEGA OF F1 RE F1 IM F1 RE F2

~59.0/7256 PI -5,2425-01 -7.240E-C1 -6+709F-01
=€£5.0/23%€ P1 -S.8621E-01 ~7e363E-C1 ~6.864E-31
-62.7/7256 P1 -S44215-01 ~7.363E~-C1 -7.01SE-0C1
~/CGeD/236 PI =5e421E-21 ~74363E-C1 -7.161E-C1
-50.07253¢ P1 ~54421%-01 =7 +353E~C1 =7¢3C3E-D1
-6040/72356 PI ~Se421E-01 =-7363E-C1 —~—7e.44CE-01
~6Ce7/2736 PI ~Te421E-C1 -7e¢363E-C1 -7e572E-01
=-€Ce2/7236 P1 -S.421%-01 -7.363E-C1 ~Te700E-21
~60.,0/256 PI —E4421E-01 -7.363E-C1 ~7.822E-01
-6CeN/256 P1 -—Se4212-01 -7+363E-C1 ~74938F=71
~50427256 P1 ~Ceb21E-31 -7363E-C1 -B.N50E~01
~6C.0/256 P1 -Se421z~-01 =7+363E-C1 -84155E-01
—€Nn.0/25€ PI1 —urQ?IE-Ol ~7363E-C1 ~R4255E-G1
-EC.0/256 P1 ~5.421E-0C1 ~-7.363E-C1 -84349E-01

oo
o o
[w e}

IM F2
~5,23€F-0C1
~5.091E-C1
-4 494CE~C1
~4,785F-C1
~4 4 E24E=-D1
-4 ,459E-01
-2 ,2B9E-01
-4,115E=-01
-3.937E-01
~3.754E-C1
-3,568E-01
~3,378E-C1
-3.184F-01
-2 .,987€F-01

Figure 12. (Continued).

OMEGA OF F2

~27.0/25€
~2€.C/7256
~2%.£/256
-264.0/256
-23.G/256
—22.0/25¢€
~21.0/7256
-2C«0Q/25€
~19.0/7256
-18.0/2€6
=17 .0/7286
~16.0/256
—-15.0/72%6
-14.0/25¢€

P1
=8 {
28§
Pl
P1
Pl
PI
PI
S8 1
PI
PI
Pl
PI
P1

00002000 D0D0DOOZ

SO

O

30 0N

2N

O N DO

W/\—‘/W

STABL®
STABLE
STABLE
STABLE
STABLE
STA3LE
STABL®
STABLE
STABLE
STABLE
STABLE
STABLE
STABLE
STABLE

—’——__—~______—/’——"‘__——_"___——’/—__-_——\\________’/’—___""\-‘_—__-__—””_——__-—~§§____—d
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COMPUTER RUN NUMBRER 2 SATCHE DATA GENERATION
THE NUM3ER 0OF DELAYS IS 2
THE CONSTANTS AFRFE:

K= Ces5C TAUL= 1.0C0
8(t) TO 3{(M)2 le0CC 1.0CC CeC 0.C CeC
T(1) YO T(Mm): 1.CCC 24000 Ne0 Oeld Cel

*®kCHECKING IF F2 OF OMEGA SUS [IMIN THROUGH
F2 DF OMZGA SUB TIMAX LIES OUTSIDE OR INTERSECTS Fl*xx%

OBSERVE THE FOLLOWING CODES BELOW

N=3 ¢ NOT A PEGION SF INTERSECTION

N=1 : A REGICN CF INTERSECTION

L==1 : X2 IS TO THE FIGHT OF F1,UNSTABLF CASF

L=1 : F2 INTERSECYS F1,UNSTABLE CASE

L=C : F2 IS OUTSIDE OF F1,STABLE CASE

OMEGA OF F1 RE F1 iM F1 RE F2 Im F2 OMEGA 0OF F2 N L
=6C.C/7256 P1 ~Se421E-21 -7.363E-01 -84437E-01 —2.787E-01 ~13.,C/72S¢ PI o] ‘0 STABLE
-59.2/7256 P1 ~54242E~C1 =7+240E-C1 ~-84519E-C1 —2.584E~-C1 -12.C/725¢ P1 Q ¢ STABLE
~59.0/7256 P1 ~S.242E-01 ~7.240E-C1 -8,595F-31 -2.378E-C1 -11.0/7256 PI c . STABLE
-59.0/7256 PI ~5e242E-01 -7e24GCE~-C1 ~8.665E-01 -2417CE-C1 -1C.0/725€ P1 o} ¢ STABLE
-5R.0/256 P1 —€.CE65-01 -7.118E-01 -8.728BE-C1 -1.96CE-C1 -9e0/2%56 PI o} ~ STABLE
-53.0/256 PI ~5eCEGE-D1 ~7.11BE-C1 -8.,785E-01 -1.787E-C1 -8.0/7256 P1 [¢} ¢ STABLE
-57.C/725€¢ P1 -4.8G3C-01 -6 +295E~C1 ~3.835E~-C1 -1e533E~C1 -7.0/725€¢ PI 0 C STABLFE
-57.07256 PI -4 4,E£93E-01 -6 «995E-01 -8.879E-D1 -1317E-01 -6.0/7256 PI 0 G STABLE
-56.0/7256 P1 ~-8,723E-01 -5.872E~-C1 -BeGl6E-T1 ~1.09G9F-01 ~-5.0/725€6 PI G C STABLE
-5545/7256 PI —4,55558-01 -€+749E-01 -~ 8946E-C1 -8.809E~-C2 -440/7256 PI1 0 C STABLE
-54.0/725€6 P1 —-4,3915-01 -6+4627E-C1 -8.,97CE~-01 ~6eE14E-N2 -3.0/725¢6 PI1 0 C STABLE
-54,0/256 P1 -4,3G1E-21 —6.627E~-C1 -8.986E-01 -4.613E-¢2 -2+£/7256 PI 0 ¢ STABLE
-£3.0/725€6 P1 —-4,2302-021 -6+504E-C1 -8.,997E-01 —-2.20€E-C2 -1e2/72%€¢ PI1 0 C STABLE
52407256 PI -6,072=-01 64381E-C1 -9.C00E-01 20159E~CS 0.0/256 PI 0 C STABLE

_———_-"~—_____f"—"‘——————‘_____,——‘_-_——‘\~_______,/"__——"‘-__________—f”-_-__‘——-_____—

Figure 12. (Continued).
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COMPUTER QUN NUMBER 2
THE NUMBER OF COELAYS IS
THE CONSTANTS ARE:

K= Ced350

B(1) YO A(Mm):
T(1) YO T(M):

TAULl=

1.0CC
1.0CC

1.0C9

1.00C
2000

SATCHE DATA GENERATION

o.o
0.0

*¥CHECKING IF F2 OF CMEGA SuB TIMIN THROUGH

F2 OF OMEGA SUR TIMAX LIES OUTSIDE OR INTERSECTS F1 %x

OBSERVE THE FOLLOWING CODES BRELOW
N=2 : NOT A REGION OF INTERSECTION

N=1 : A REGION OF INTERSECTION
IS TC THE RIGHT OF F1,UNSTABLE CASE
L=1 ¢ F2 INTERSFECTS F1,UNSTABLE CASE

P F2 1S OUTSIDE OF F1,STABLE CASE

t=-1 2% x2

L=C

OMEGA OF F1

53.0/7256
54.0/256
S4.,0/256
5540/256
56.0/256
57.0/7256
57.0/256
58407256
S58.,7/7256
59.0/256
5G.0/256
S3.0n/256
6Ne /255
60.0/256

P1
PI
Pl
PI
PI
PI
PI
PI
P1
PI
Pl
PI1
PI
Pl

RE F1
-4,2302-91
-4, 3G2E-01
-4,3925-01
-8 EEHE-D1
-8 4723F-01
~6.8637-01
-4,8G3E-01
—5.CEE5-01
~5er6E6E=1
~5,242E~C1
~-5.262E-51
~5.2420-01
-E4422E-01
-S,4228-01

IM F1
6e504E-01
64627E-C1
6.627F-C1
647SCE-C1
6.872E-01
64995€-C1
€+99%5E-01
7.118€E~C1
7.118E~C1
7+240E-C1
7.24CE~-C1
7+24C0E-C1
7+363E-01
7+363E-C1

RE F2
-8,997E-C1
=84%986E-01
—B8.97CE-0O1
-84946E-01
-B8+915F=-01
-B8.878F-C1
-8.835E-01
-8.785£-01
-8,728E-91
-8.665E~01
~=B+59%E~01
-8.519E-C1
—-B8e437E-C1
-8 349E-C1

IM F2
2.211E-02
4.817E-02
6+.618E-C2
8.813E-C2
1e10CE-C!
1.317E-C1
1.533E-C1
1.748E-C1
1.960E-01
2.171E-C1
2.379E-01
2.584E-01
2.787E-0C1
2.986E-C1

OMEGA OF F2

1.0/72€€
2.0/256
3.0/7256
4407256
Se0/7256€
640/256
Te/256
Be0/2S6
9.C/7256
1007256
11.0/7286
12.0/256
13.0/7256
14.0/7256

Pr
2
Pl
P1I
Pl
Pl
Pl
P1
Py
Pl
PI
Pl
PY
Pl

DO0OO0OO0O00OOTCOOODDZ

DO OOO0Or

DHOHDOOO

F"—__—_——_—-__-\"~_—’——___-_———-_—"\‘__-_—_——"—_—_—_-—_‘\\‘____—"——’—_—-__—_—-N‘--_—___—_—’———_——W

STABLE
STABLE
STABLE
STABLE
STABLE
STASBLE
STABLE
STABLE"
STABLE
STABLE
STABLE
STABLE
STABLE
STABLFE

_—""‘—~—-_____—"—"‘~——————~‘____,——"""'_"-—_______—"—__—_""-___———___,——”'__-—-_“‘-—_————J

Figure 12. (Continued).
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COMPUTZR RUN NUMBEPRP 2
THE NUMBFR OF DELAYS IS

THE CONSTANTS
K= 0450 .

B(1) YO B(M):
T(1) TO T(M):

*k CHECK ING

z2
[[IY]

(o

noi

[}

L

rrcz

IF

NOYT A REGICN OF

OMEGA OF F1

€E04C /236
60407236
6L e0/256
5C.C/236
6Ge0/7256
6Ce0/256
£0eD/256
6007256
ECe0/ 256
6C e /236
60607256
55007256
53.0/256
€940/256

Pl
P1
2|
P
PI
o |
P11
PI
P1
Pl
P11
PI
2
PI

ARE:
TAUL=

1.C0CC
1.0CC

1 A REGION OF INTERSECTION

1 ¢ X2 IS TCQ THF RIGHT NF F1+UNSTABLE CASE
1 F2 INTERPSECTS F1,UNSTARBLE CASE

F2 1S OUTSICE OF F1,STABLE CASE

RE F1
-S4422E-01
-feb22-01
~5.422E-01
=Ce4225-0C1
~5.422E~01
-8 k22E-01
~S5e422E~01
—F,4222-01
~Cet22E-01
—Se422FE-01
~8e4228-01
~Ee422E-01
-5.242Z-01
-Ee242E~-01

1,009

120C
24000

SATCHE DATA GENERATION

SERVE THFE FOLLCWING CODES BELOW
H INTERSECTION

IM F1
74363E-C1
7e363E-C1
7.363E~-C1
7+363E-C1
7e363E-C1
7.363E-C1
7+363E~C1
7.363E-01
7+.363E-(C1
74363E-01
7+363E-C1
7.363E-C1
7.24GF~-01
7.240E-C1

D0
NeC

Ce0
Oe0

F2 OF OMEGA SUB3 TIMIN THROUGH
F2 NF OMSGA SUB TIMAX LIES OUTSIDE OR INTERSECTS Flx%

RE F2
~-B842555-01
~84155E-01
-84049E-01
-7.938E6-01
=7+821E~C1
=T7«699E-01
~7e572E-01
-~7.440E-01
~7e303E-C1
-7.1615-01
-7.015F£-01
~64864E-C1
=647C9E-21
~6455S0E-C1

IM F2
3.185E=-C1
3.378E-C1
3.568E-01
3.755E~01
3.€37E~-01
44116E-01
44290E-C1
444E9E-01
4.625E-C1
4,785E-01
4 ,34CE~-D1
Se091E-01
S.23€E-01
Se376E-01

Figure 12. (Continued).

OMEGA OF F2

15.07256
1607256
17.0/7256
18.0/2%€
19.0/256
2007256
21.0/256
22.07256
2307256
24.C/256

€.0/7256
26.0/256
27407256
2B.0/725%6

PI
P1
PI
Pl
PI
Pl

Pl

PI
Pl
Pl
Pl
PI
Pl

pr’

DO ODOOO0O0O0ODO0OZ

OO DOMNMD DO DI

STABLE
STABLE
STABLE
STABLE
STABLE
STABLE
STABLE
STASLE
STABLE
STABLE
STABLE
STABLE
STARBLF
STABLE

\/\__/\__\_/—’-\_/\A/_\___ ,
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COMPUTER RUN NUMPBER 2
THE NUMBER 0OF DELAYS IS
THE CONSTANTS ARFE:

K= Ceasn

3(1) TO 3(M):
T(1) YO T(M):

TAUL=

1e0CC
1.CCC

1.0C0O

1.CO0C
2000

0.0
9.0

¥*xCHECKING IF F2 OF OMEGA SUB TIMIN THRAIUGH

F2 OF OMZGA SUR JIMAX LIES QUTSIDE OR INTERSECTS F1lx%%

NDASERVE THE FOLLOWING CODES RBELOW
=7 ¢ NOT A REGICN CF INTERSECTION

N=1

=-1 3

e
[0}

OMEGA QF F1

S3en/255%
589.0/256
CR.G/256
58.0/256
E70/7256
57.0/7256
3707256
56.0/256
56607256
SSeN/235
88.0/7256
54407256
5307236
53.C/72%6

P11
PI
o1
PI
P1
PI
Pl
P1
Pl
2B 4
12 4
PI
P1
PI

A REGION CF INTERSSCTION
X2 IS TC THE PIGHYT OF F1,UNSTABLE CASE
1 ¢ F2 INTERSECTS F1,UNSTABLE CASE
! F2 IS OUTSIDE NOF F1,STABLF CASE

RE F1
~54262%-01
—S.CEBE-C1
~S5.CEEZ-21
~S.LE6E-01
—4.,893E~-01
=4, AG3E-731
~44893E-01
~44723%-01
-4,7235-21
~44,556=-01
=4 ,55€5-01
-&4392E-01
~4,230€E-01
~44230E-01

IM F1
7.24CE-C1
7«118E-01
7.118E-C1
7.118FE-01
6e995E-C1
£ «GI9SE-C1
669395501
6.872E-01
6.872E-C1
6+75CE-01
6.750E-C1
6.627E-01
6e50N4E-01
€.S504E-0C1

RE F2
-6+388E-01
~6e222F=-51
-€+.CS2E-(1
~58R79E-01
~S.704E5-01
-54525E-(1
~Se3440-~01
-Se161E~01
-4.976E-01
-4 ,789F=-01
-4 .€E0CE-C1
-4.,610E8~-C1
-4,218E-01
-4,026F-01

o0
. e
(o Je]

M F2
SW.510E~-C1
Se€39F-i 1
S5.782E~0C1
S.88CE~C1
Se951E£-0C1
6.097E-C1
Ee1GHE-C1
6.289E~-01
6e376E-C1
64457E~C1
6.532E-01
6.60CE~-C1
€.661E-01
6717E-C1

OMEGA 0OF F2

29.0/725¢6
3l.0/256
3l.0/72%6
32.07256
33.0/256
34407256
35.0/725¢€
36407256
37.0/7256
38.237256
39.0/25€
40e0/7256
41.0/256
42.07256

Pl
PI
Pl
PI
Pl
PI
PI
2 §
Pl
PI
PI
Pl
Pr
Pl

QN oZ

[

O rsbe e DODOO

[N IED B B BN uy

[ RSN T B T B |

WW

SATCHE DATA GENERATION

STABLFE
STABLE
STARLE
STABLE
STABLFE
STABLE
STABLF
STABLF
STABLE
STASBLE
UNSTABLE
UNSTABLE
UNSTABLFE
UNSTABLE

L/\/\—\/——\/_\,\/\___‘

Figure 12. (Continued).
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COMPUTER RUN NUMBER 2
THF NUMBER OF DELAYS IS 2
THE CONSTANTS ARE:

SATCHE DATA GENERATIODN

K= Ced50C TAUL1= 1200
B(1) TD 3(M): 1.CCC 1009 Qe0 0.0 Ced
T(1) TO T(M): 1.CQC 2000 0.0 0.0 CeC

**¥CHECKING IF F2 OF CMEGA SUS3 TIMIN THROUGH
F2 0OF OMEGA SUB TIMAX LIES OUTSIDE OR INTERSECTS Flx*xx

OBSERVE THE FOLLCWING COOES BELOW

N=0O ¢ NOT A REGICN OF INTERSECTION

N=1 ! A REGION OF INTERSECTION

L==1 ¢ X2 IS TQ THE RIGHT OF F1,UNSTABLE CASE

L=1 ! F2 INTERSECTS F1,UNSTABLE CASE

L=2 ¢ F2 IS QUTSIDE OF F1,STABLE CASE

OMEGA 0OF F1 RE F1 IM F1 RE F2 1M F2
52407255 PI1 -4.072=-01 €.381E-01 -3.,832E-C1 E+756E~01
S52.07256 P1 =4.C72E-01 64381E-01 -3e63GE~-01 6.8CBE-C1
51.56/7256 P1 —3.G175-01 64259E-01 —=34445E~-0C1 £sB44E-C1
50.0/7256 PI1 =3+7€5E-01 5.136E-01 -3+251E-C1 6.874E-01
S0.0/7236 P1 =3e7€5E-1 64136E-01 ~3.057E-21 64897F-C1
49.0/7256 P1 —3.61€2-C1 6.013E-C1 —2.864E-01 5.314E-C1
4R.C/256 PI ~3.47CE-01 Se391E-C1 —2+671E-C1 64924E-C1
4845/7256 P1 -3.470zZ-01 S.891E~-C1 -2.479E-01 €sS28E-C1
a7.0/236 P1 —~3e327E-01 S5e768E~C1 ~2.2885-101 £4G26E-C1
46.,0/725€ P1 - 3.187E-21 Se€4SE-C1 —2.0985-C1 64518£-C1
45.,2/25€6 P1 -3.08CE-01 5.522E-C1 ~1.910€=-C1 £.QC3E~01
4507256 P1 ~3.CECE-01 Se522E-C1 ~1e724E~01 €4882E-C1
G4,0/7255 P1 —2.G1€£E-21 Se40CE~-Q1 -1.539E-91 6.85€EE-C1

OMEGA OF F2

43.0/7256
44.07256
45407256
A€ 40/2E6
47 «0/256
GB42/25€
49Q,,0/25€
E0Ce0/256€
S1.0/725¢€
52407256
£3.0/256
54.0/256
55407256

Pl
Pl
Pr
PI
PI
PI
P1
P1
P1
el
P1
Pl
PI

HDDO0O0O0OO0DOIIO0OOOOZ

W

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

UNSTABLE
UNSTABLE
UNSTABLE
UNSTABLE
UNSTABLE
UNSTABLS=
UNSTABLE
UNSTABLT
UNSTABLE
UNMSTABLE
UNSTABLFE
UNSTABLE
UNSTABLFE

Figure 12. (Concluded).




—F (EXP (8} ) « CURVE WITH DELAYS
++++ F(S}sCURVE WITH N@ OELAYS

uunn PART OF F
TG OMEGA OF F (3) BOUN
178 OUTER Iuisnszc110ns WITH

E (EXP (S)) COHHESPONDING 5

1.60

O

SATCHE DIHGHHM
CONSTANTS: us,
TREEXPONENTS FOR THE PURE TINE DELAYS ARE:

1.0 2.0 0.0 0.
THE FEEOBACK CUEFFIC]ENTS FOR THE DELRYS RARE:s
1.0 1.0 0.0 0.0 0.0

2-0ELAY (S} PROBLEM
K= 0. 1.0

1
2.00

F, (EXP (S))
(]
w -
[
(==
(=]
°|r
-1.60 -1.20 -0.80 -0.40 00 0. 1.20 1.60
REAL Fji,F2
6#
]
(]
o.
1
o CALCOMP COMPUTER-DRAWN PLO
& FRoGRmm-pLoT oeatan N, FiRtaves paess
< ORTEs 8/1/72

Figure 13. First Satche diagram for a case with two delays.
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-

3.20

—F, (EXP (S)) 1 CURVE WITH DELRYS

++++ F (S} (CURVE HITH NO DELAYS
=]

wnun PART OF F(EXP(S)) CORRESPONDING ;]
10 OMEGR OF F (S) BOUNDED BY
179 OUTER INTERSECTIONS WITH
F(EXP (S))

SATCHE DIHGBHM
CONSTANTS .0
SRECEXPONENTS FeR THE PURE TINE DELAYS ARE:

1.0 2.0 .0 0.0 0.0
THE FEEDBACK COEFFICIENTS FOR THE DELAYS ARE:
1.0 1.0 0.0 0.0 0

Koo 2-DELAY (S) PROBLEM

o

-
.

3]
)

50 1.00
REAL F1,F2

L]
2.50

CALCOMP COMPUTER-ORANN PLOT
PROGRAM-PLOT DESIGN :+ JACQUES PRESS
OATE: 8/1/72

Figure 14. Second Satche diagram for a case with two delays.
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0.80

——F,[EXP (S)) t+ CURVE WITH DELRYS

++++ [ (S) sCURVE WITH NO DELRYS
S

wwnn PART QF E (EXP (S)) CORRESPUNDING -
TO OMEGR OF F {S) BOUNOED 8
éEEXOU;ER INTERSECTIONS HITH

SATCHE DIAGRAM
CONSTANTS:

K=0.25 ,TAUl=

Z—gELHY(Sl PROBLEM
Iﬂg EXPUgENTS Fﬁg EHE PURE TIME DELRYS RRE:
THE FEEDBACK COEFFICIENTS FOR THE DELAYS ARE:
1.0 1.0 0.0 0.0

Figure 15. Third Satche diagram for a case with two delays.
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NgJ

ug
o

—t 3"
(=]
(=]

-0.80 -0.60 -0.40 -0.20 00 0.20 0.40 0.60 1 0.80 1.00
REAL F1,F2

1
o.
1
o CALCOMP COMPUTER-DRAKN PLOT
@ PROGRAM-PLOT DESIGN  JACQUES PRESS
oJ DRATEs 8/1/72



0.60

——F (EXP (3)) s CURVE WITH DELAYS- SATCHE DIHGRF\M 2-DELAY (3) PROBLEN-
CONSTANTS: _K=0.35 . TRUL=
ve++ E(S){CURVE HITH NO DELAYS THE "EXPONENTS FOR THE Pugeonns DELAYS ARE:
S THE FEEDBAGK COEFFICIENTS FOR THE' DELATS ARE:
wwxn PART OF F.(EXP (S)) CORRESPONDINGG | 1-0 1.0 0.0 0.0 0.9
70 OMEGR OF F (S) BOUNDED BY
ITS OUTER INTERSECT
£, (EXP (S))
S
w3
-t
w
o
g
=
Q
Q
) Ll L T L L 1 1
-0.80 -0.60 -0.40 -0.20 00 0.20 0.40 0.60 0.80 1.00
RERL F1,F2
5.
Q
=
o
]
° OMP COMPUTER-ORANN PLOT
© PROGRAM-PLOT DESIGN  : JACQUES PRESS
oJ DATE: 8/1/72

Figure 16. Fourth Satche diagram for a case with two delays.

92



kEkkCONTINUNLS SYSTEM MADELING PRI CGPAMRR X«
kkk VERSINN 143 *%x

L ABEL TIMF DFLAY MNDEL UNIT STTF INPUT
CANSTANTY Bl=1., +32=1.
DARAMETFR XK=0,45, TAatJl=1. " e 0o
Ti1=14» T2=2,
DYNAMT”Z
X1=STF2(0.)
X2=X1=3 1% X6~-82%X7
X 3= XK %X 2
X4=QFEA_PL(Oes TAUL s X3 )
XS= INTGRL (O ey X&)
XE=DFLAY(10,T1,X5)
X7=DTLAY( 10, T2, X6) )
TIMEP DELT=0+05,FINTIM=R0, sPRIEL=1e0,0UTNEFL=1.0
MET HOD ADAMS
PRYPL T X7
NN '
PARAMFETER XK=0,25 (PROGRAM IS RERUN AT THIS STEP)
END - R
DARAMETFD XK=0,35 (PROGRAM IS RERUN AT THIS STEP)
END
SYDOP

OUTPUYT VARTARLE SEQUINCF

X6 X7 x1 x> x3 Zz70003 xa x5

IITOUTS INPUTS  DARAMS INTEGS + MFM 3LKS FORTRAN  SATA )3

12(500) 3R(1400) 10(400) 2+ 2= 4(300) (50 Q) 12
FNDJOR

NOTATION:

XK=K (AS IN TEXT) :

REALPL, INTGRL, DELAY, STEP = FUNCTIONS DESCRIBED IN APPENDIX F,
METHOD ADAMS = INTEGRATION METHOD USED. (SEE REF, 52)

TIMER = DESCRIBES THE SELECTED TIMING SEQUENCE.

Figure 17. Continuous System Modeling Program (simulation) for the case of two delays.
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TIME
0.0
1.0000E
2e0000E
3.0000E
4 ,0000E
5.0000€
6 +0000FE
7.0000FE
8.,0000€
9.0000€
1.0C00E
1.1000E
1.2000€
1+3000E
1.4000F
1.5000€
1+6000€
1 .7000E
1 .8000E
1 +9000E
2 .0000E
2+1000E
2..2000E
2.3000E
2+4000€E
2 .5000E
2 +6000E
2.7000E
2 +8000E
2 +9000E
3.0000€
3.1000F
3.2000E
3.3000F
3.4000€
3.5000E
3.6000€
3.7000€
3.,8000€E
3.9000E
4,0000€E
4.,1000E
4 ,2000E
4 .3000E
4 .A4000E
4 .S000E
4 ,6000E
4 .T000E
4 ,8000E
4 «9000E
S.0000E

00
00
00
00
00
00
00

TIME DELAY MIDEL UNIT STEP INPUT

MINIMUM

-1.2101E 01

b &4
0.0
0.0
0.0
0.0
1.6572€-01
S5+.0530E-01
8.5712E~01
1.1128E 00
1.1849E 00
1.0273€ 00
6, 7453E-01
2.3200E-01
= 1,5673E-01
=3.5368E~01
=247464E=01
T7014E=-02
6. 04092E-01
1.14088 00
1.5039E 00
1.5538E 00
1.2464E 00
6,5637€E=-01
-3.3105€E=-02
~6,0776E-01
~8+46378=01
=64+4355€-01
-3.,0873E-02
B8e¢1673E~-01
1.6286F 00
241232 00
2.1034E 00
15317 00
S+5676E-01
-5e42163F-01
- 1634245 00
=16015FE 00
=1.1620€ 00
-1.1433E-01
1,2344€ 00
2.4473E 00
3.0965F 00
2+9106E 00
1.8816€ 00
24 89C€0E=01
-1.366%F 00
=2e525KE 00
-2.74615 00
~1.A717€ 00
~-1.0819€=01
2.015°F 00
3.8029 00

1

X7 VERSUS TIM3

- - - ———— - - - —— =

———— -

-

-—

———————

-~ ———

———— -

———-————t

-

——

- ———— - - -

—————————— > -

————— e = e

——————t

-

—n

————

+ +

———————— e b = ————

—— -

—-———

———

- —— o o -

+

————————— ——

-

——————— - v - -

——————t

—mmm———

+
+

————— -t

-

-

+

+

——

— — — ——

———————

—

- +

- - —————— ——— ———— -———— -

- e e o e o e e e et e S o e e v e @

- -——— -

—————

————————

- —— - —— - — -

-

+

e mrm—ec—n .- ——————————

+

Figure 18. Output to Figure 17 with K =0.45.
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Oa GE 1

MAXIMUM
1.,0575E€ 01
1

-________‘,——--—.________________,——--————~.___________’,—"""-________________,——————-—__




TIME DELAY MIDEL UNIT SYEP INPUT

MINIMUM

~1.2101E 01

m

RAGE 2

X7 VERSUS TIMS MAX I'AUM

1.0575E 01

TIME X7 1 1
S<1000E 01 4.6103E 00 —~= ~————- ——— ————
5.2000E O1 4.0760F 00 =—————mem—m—m———m——————————— —————
S.3000E O1 2.2703E 00 -- ———— et
5.4000E 01 =2.$334E-01 ————t
5.5000E 01 =2,3160E 00 =-- ———— -
5.6000E 01 =4,4117€ 00 ~—==—w—mcecmce—e-t
S5¢7000E 01 =4,4594E 00  =—w—cwme—c—acc—aot
5.R000E 01 =2.809SE 00 —-== ——— +
5.9000E 01 1.1811E-01 =~ ——— -—t
6 +0000E 01 3.4289E 00  ~- —— m— e e ——————t
6.1000€ O1 60 01CBE 00 ====mecece—s——cce—mc—m— e —m——————————
6 .2000E 01 609399E 00 ———mmmmmme e — e — e — ————————————————
6 .3000E 01 5.7295€ 00 - ——
6.4000€ O1 2.6204E 00 —_— ——— e ——+
6.5000E 01 =1.4880E 00  ~—=—————r——mmcecccoe———et
5¢6000E 01 =542611E 00  ===ccmeeccec—me——at
6+7000E 01 =7,3869E 00  =e—=wem—ce=it
6.8000€ Ot =6+98B93E 00 ~=——=———-—=t
5.,9000E 01 =3,9877¢ 00 =~ — +
7 .0000E 01 B841218E=-01 == ———- et
7 +1000€ 01 S+9184E 00 - ———— -———— e -
7.2000€ O1 Q.6052F 00 ~m—emmmm————cree——————— — .
7.3000E 01 120485 01  ~wmemeccer-—e—ere———————— - ——— —
7.8000E 01  B.0148€ 00 -~ —— s e
7.5000€ 01 ~ 2.7531F 00 =-- - -— N
7.6000F 01 =3.7349E 00 ——— +
7.7000E 01 <=9.32B6E 00 ~ew—==+
7.8000E 01 =1,2032F 01 +
7¢9000F 01 =1,0667€ 01 ===+
8 ,0000E 01 =5.3538F 00 - ——————————
Figure 18. (Continued)
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T IME
0.0

1.0000F
2.0000€
3.,0000€
4.,0000€
5.0000E
6.,0000E
7.0000E
3 .0000€
9 .0000F
1.0000€
1.,1000F
1.2000E
1+3000€E
1.4000€
1+5000€
1 +6000E
1.7000€
1.8000€
1 «9000€
2.0000€E
2.1000E
2.,2000E
2,3000€
2 .4000E
2.5000€
2+.6000F
2.7000€
2 .8000F
2.9000E
3,0000€
3.1000€
3.2000F
3.3000E
3,4000€
3.5000F€
3.6000€
3.,7000E
3.8000E
3.,9000E
4 .0000€E
4,1000E
4 .2000F
4,3000€E
4 ,4000F
4 .5000€E
4 .6000E
4 ,7000€
4 .8000€
4,3000E
5.0000€

TIME DSLAY MIDEL

4,5623E-01
3.42645-01
2+75095-01
2.6257-01
3,0153E~-01
3.7794E-01
4,7144E-01
S¢6039E~01
6. 2655€~-01

645855E-01

6.5350€-01
6.1666E=-01
5. 5939€-01
4,9607E-01
4.4074E-01
4,0816E=01
3.91925-01
4,0385E-01
4,3470€-01
4,75845=-01
5e1741E=-01
5.5062E-01
5.69405-01
5.7142€-01
5.5816E-01
Se3413E-01
5.,0563E-01
4,7916F-01
4,6007E-01
4,5157E-01
4,5423E=-01
4,6625E-01
4,8402E-01
5.0315E=-01
5.19455-01
S5.2981F-01
S5.3271€-01
S.2839E-01

Figure 19. Output to Figure 17 with K = 0.25,

UNIY STEP INPUT

8+5620E-01

1
MAX MUY

1

+

—-—

[N ———

MINIMUM X7 VERSUS TIMZ
0.0

&4 1
0.0 +
0.0 +
0.0 +
0.0 +

. 9.,2065€E=02 —————

2.82146=-01  ——=——- - — e e
4,9230€-01 - - ———
6478325-01 - - - — e i o
8. 0689E-01 - - —————
8.56208-01 - - — ——————————
B,24676=01 - — -—
7+2830E-01 e ————— ————— e vt —————————
Se9470E-01 - ———— —————

o o i e

+

-

—

+

——— - ————— -

————————

e ————— - o —————

- - v s > e o

- -———— ———— e —————— -

- e = ————

-— - ———— -

- ————— -+
- ——— ——
-——- - ———
————- —-——
——— — -+

B Ty Y

- ———_— - ——————— - —— - -

- ——— - -

- -— ————— e ————-
- —— - ———— -
- ————— e ——

- e - — -

-

- —-———-——— -

—————————- = —

—— -

rmm——— e ———- e ——

———————————— ——

- - —

+

- +

e e —— . . e ———————————————
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TIME
5.1000€
S «2000E
S «3000E
5+4000E
5 «S000E
5 .6000E
S«7000E
5+8000F
5 «9000E
6 .0000F
6.1000F
65 .2000€
6 «3000F
6 +4000E
6 +S000F
6 +6000E
6 .7TO000E
6 +8000E
6 +9000F
7 +0000E
7 .1000E
7 .2000F
7+3000E
7.4000€
7.5000E
7.6000E
7 .7000E
7 +8000E
7 +9000E
2.0000E

TIME DELAY MIDEL UNIT STEP INPUT

MINIMUM

0.0
x7
S.1857E-01
S+ 05G4E~01
4.9349E-01
4.8382€~-01
4,78€65E~-01
4,.7857€-01
4,8301E~-01
4+9054E-01
4.9920E~01
540706E-01
541254E-01
S«18475E~-01
Se1361E~01
5.0972F-01

S5.0423E-01 -~

4,9846E~-01
4.9367E-01
4,50755-01
4.,9012€~-01
4.9164E=-01
8,94 75E~01
4.9861E-01
S+.0233F~01
540514E-01
5.0655€-01
S5.0641F-01
Se0494FE-01
S+ 0259E-~-01
4,9987€~01
4,9764E-01

1

X7

— T T —, T T T ———

VRSUS TIMZ

————— - .-

- e e e e T e e T e Tt e

_————————

————

-——-

————————— e = -t

- ———

————

-———

———————————— —————

-—————

. - - ——

—————————— — ———

-y e e e O

-

——————— v o e o

—————-——-—

—————— - ——¢

o i o e

- e = e 4 e

———

- ——— -

— - - ————————

- ————— -
- —--— - +
- - - - —————
- ———-—— — ——————

———————————

- o - - -

+

PAGE 2
MAXIVUM
8.5620E-01

1

Figure 19.

(Continued)
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TIME DELAY MIDEL UNIT STEP INPUT BAGE 1

MINTMUM x7 © VEPSUS TIMI VA X IMUM
-2.1531E=-02 1.0306F 00
T IME x7 1 1
0.0 0.0 -+ .
1.0000E 00 0.0 -+ ) -
2.0000E 00 0.0 -+
3.0000€ 00 0.0 -
4 ,0000€ 00 1. 2889€=01 ———————
5.0000€ 00 3.9400E=01 B T BT
6 .0000F 00 6.77935=-01 B ettt 2
7.0000€ 00 9.0743E-01 T g
8 .,0000F 00 1.0245€ 00 Bt ittt c————— -—
9 .0000€ 00 S.9422E=01 ——— ———- ———— ———em e ——t
1.0000E 01 8,2593€-01 B T et T L e P
1.1000F 01 Se 67G4E=01 e emmemeesme mr— e —————— - =}
1.2000€ 01 2.9262E=01 - ——————t
1.3000€ 01 7.68245~02 ————
1.4000€ Ot =1,05875=02 +
1 .SO000€ O1 2.9534E-02 -
1.6000E O1 2.0987E=01 S g
1.7000€ 01t 4, £9505-01 B ittt 2
1 .8000€ 01 7.3631F-01 - -—
1 +.9000E 01 9.3556E=-01 e b T et d
2.0000E 01 1,0121F 00 - - ———— ——— -—
2.1000€ Ot $e45275=-01 —————————- ——————————————— e e ———————¢
2.2000€ 01 7+5469E~01 e . .- e—m e — . s e —m e me e ——————
2.3000€ 01 4,9426E=-01 -- - +
2,4000€ 01 2.3704E-01 m—————————¢
2,5000€ 01 S5.477SE=02 -——
2 .6000F 01 -2,1728€E=03 +
2.7000E 01 8,1304E=-02 ———
2.8000E O1 2,8105€-01 —emmem——ee——-——t
2.9000€ 01 S¢4062E=01 crmceeere— ce e — e ——————— —
3,0000€ O1 7+8725E-01 -— ————— ———— +
3.,1000€E Ot 9.5222€-01 ————m——————- - - - ———————t
3,2000E O1 9.9003E«01 B L e T ek
3,3000€ 01 8.9062€-01 - ———— - R
3.4000E 01 6+8339F=-01 em e mmm— e n en m—e e ———— - - ———————
3.5000€ 01 4,2599E=01 merrmce e e —————————
3,6000E 01 1.9084E=01 S et ]
3.,7000E 01 4433G0E=02 ———
3.8000E 01 2.4215€6-02 -
3.9000€ 01 1.37875=-01 ——————
4,0000€ Ot 3.5182E-01 B e Y
8,1000€ 01 6.,05786-01 e
4 42000€ 01 B84 2865F=01 ———— ————a —— e - ————
4 ,3000€ O1 9,5846E-01 e — e e eec— e e — . e ———————— -t
4 ,4000E 01 9.5959¢=01 -~ - —— —————— - ———t
4 ,5000F 01 84 3252E-01 eemmemmece ce mmecme—,—— - s o ————————
4 ,6000E O1 641349E~-01 - c———eem———t
4 .7000E 01 3.6416E-01 B ittt 3
4 48000€ O1 1.5428F=-01 ———————t
4.9000€ O} 4,21326-02 ———
$.0000E 01 5.83955=02 ———

-_________,,———-—._____________,,————————~\_________,,/"""-5____________,———“-———

Figure 20. OQutput to Figure 17 with K =0.35.
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TIME
5410006
5.2000€
5.3000E
5.4000F
5 .5000E
5 .6000E
5.7000€E
5.8000€
5.9000F
6.0000E
6+1000E
642000€
6.3000F
6.4000E
6.5000E
6.6000E
6.7000€
6 +8000E
6+.9000€
7.0000E
7.1000€
7.2000E
7.3000€E
7.4000E
7.5000E
7 .6000E
7.7000E
7.8000E
7 .9000€
9 ,0000E

-2.1831E-02

) &4
1.€773E=-01
4.,2051=-01
6+6408E~01
B.60375=-01
Qe54915=01
Se21G6RE=-01
7+ 7156E-01
S«4632FE~01
3.0656F=01
1.2740E-01
Se0297E-02
9.91095-02
2¢5944E-01
4,8587E-01
Te14835=-01
848245E~-01
2.4235F=01
8. 7849E-01
7+ 0946E-01
4,R305E-01
2.627RE~0t
1.1005F=-01
6.,7027E=02
1.4506E-01
3.2159E-01
Se.4679E=-01
7.5754E~01
B.9514E-01
Qs2167F~01
843042F~-01

W

TIME DELAY MIDEL UNIT STEP INPUT

BAGE 2
MINIMUM X7 VERSUS TIMI MAX TUUM
1.C 306 00

1 1
it S S
- ——————— ————————
- = - ot 2 20 2 e o e
- - —— - ——— - - -——————

e - - i —— ————— Y. —— - ——— - —— - o

— - —— - ———
- ——— — ————— — ——— ——— =

- - ——-— - -

-—-————————— ——
- —— -
———

-

———

-— - ——

- ——— as -, m—— -

——— ———————

- ————— - - - - -t
- - —— n - +
- — -

- o - ——n
- an

—-———

— -

- -— +

- e e = e 4 e 0

- —— ——— +

e e ————-—— —— ———— — ¢
———— - - - ¢
-— ————-—— e ——— cc—————— n - ——-

Figure 20. (Continued).
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——F (EXP (S} ) 1 CURVE WITH DELAYS SHTCHE DIHGRFIM 1-DELAY (S) PROBLEM
++++ F(S) 1CURVE WITH NO DELAYS

nunnx PART OF F (EXP(S)) COHRESPONDINGq
F (S) BGUNDED BY

70 OMEGA OF
ITs BUTER IN
£, (EXP (S))

3.20

CONSTANTSs K=2,00,TARU1=0,00
THE EXPONENTS FOR THE PURE TIME DELAYS ARE:

1.0 9.0 0.0 0.0 0.0
S THE FEEDBACK COEFFICIENTS FOR THE DELAYS ARE:
1.0 0.0 0.0 0.0 0.0

<

feaSECTloNs WITH

IMRG F1,F2
1.60

0.80

Figure 21.

50 1.00
REAL F1,F?

CALCOMP COMPUTER-DRAAWN PLGT
PROGRAM-PLOT DESIGN s+ JRCQUES PRESS
ORTE: 8/1/72

-2.40

First Satche diagram for a single delay case.
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—F, (EXP (S)) 1 CURVE WITH DELAYS

++++ F(S5) sCURVE NITH NO OELRYS

p]
muun PRRT OF E (EXP(S)) CORHOESPONDING 5

0 OMEGR OF F (S) BOUNDED 8Y
lTS OUTER INTERSECTIONS WITH

1.60

SATCHE DIHGRRM
CONSTANTS: K=1.00,

TH% EXPOgEgTS Fﬂg EHE PUgEoTIHE (D]ELRYS ARE:
THE FEEDBACK COEFFICIENTS FOR THE DELAYS RARE:
1.0 0.0 0.0 0.0 0.0

1-0ELAY (S} PROBLEM
=0.00

. .

F,(EXP (S))
o ¥
“cy
— ]
L
o1
aS]
hatSy
]
ol
-2 _
i Ll L) LI g L] Ll B 1
-1.60 -1.20 ~0.80 -0.40 4o 0.80 1.20 1.60 2.00
REAL F1,f2
Q
=’
o
)
[=]
[ -]
o
]
o CALCOMP COMPUTER-DORRWN PLOT
o PHO?RQH-PLUT DESIGN :+ JACQUES PRESS
- DATEs 8/1/72

Figure 22. Second Satche diagram for a single delay case.
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3.20

——FR (EXP (S)) 1 CURVE WITH DELAYS SATCHE DIAGRAM 1-DELAY (S) PROBLEM
: CONSTANTS: K= 1.57 ,TAUL=
THE EXPONENTS FOR THE PURE TIME DELAYS ARE:

.0 0.0 0.0 0.0 0.0
S THE FEEDBACK COEEFICIENTS SOH THS gELRTS ARE:

nunn Panr or (EXP (3)) connssronoxns 4 | 1.0 0.0 .0 o. .
oF F(S) BOUNDED BY
sz OUTER xnfensscvlous WITH
F, (EXP (S))

++++ £ (S) 1CURVE WITH NO DELRYS

IMAG F1
0,80

n 1
1.20 . 2.00

o 0.80
REAL F1,F?

CALCOMP COMPUTEA-DRAWN PLOT
PROGRAM-PLOT DESIGN :+ JACQUES PRESS
DATE: B/1/72

-2.40

Figure 23. Third Satche aiagranlfor a single delay case.
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1.60

——F,(EXP (S}) 1 CURVE WITH DELAYS SATCHE DIHGBHM 1-DELRY (S} PROBLEM
CONSTANTS: K=1.00,TAU1=1.
THE EXPONENTS Fé rue PURE TIME DELAYS ARE:

4.0 0.0 0.0 0.0 0.0
S THE FEEDBACK COEFFéCIENTS FOR THE gELRTS ARE

wnwn PART OF F.(EXP(S)) connssronnlnc | 1.0 0.0 0. 0.0 0.
TG GMEGR OF F (S) BOUNDE
ITS QUTER INfEnsec11ons HITH
£ (EXP (S))

++++ F (S) sCURVE WITH N@ DELRYS

MAG F1,F2
0.80

0,40

-1.60 -1.20 -0.80 -0.40 00 0.40 0.80 1.20 1.60 2.00
: REAL F1,F?2
>
od
]
8
S
]
o CALCOMP COMPUTER-DRAKN PLOT
& PROGRAM-PLOT DESIGN « JACQUES PRESS
3 DATEs 8/1/72

Figure 24. Fourth Satche diagram for a single delay case.
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0.80

——F,(EXP {S}) 1 CURVE WITH DELAYS 1 ['sATcHE DIRGHF\M 1-DELAY (S) PROBLEM
CONSTANTS: = K=0.50  TAUL=1.00 .
++++ £ (S) {CURVE WITH NO DELAYS THE EXPONENTS FOR THE PURE TIWE DEL '
o| | THE FEEDBACK COEFFICIENTS FOR THE DELAYS ARE:
wxnw PART OF F(EXP (S)) connssronnxuc 4 L1-0 0.0 0.0 0.0 0.0
T0 OMEGR OF F (S) BOUNDED BY

ITS BUTER INTERSECTIONS WITH
F,(EXP (S1)

T
0.80 1.00

CALCOMP COMPUTER-DRAWN PLOT
PROGRAM-PLOT DESIGN s JACQUES PRESS
DATE: B/1/72

Figure 25. Fifth Satche diagram for a single delay case.
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—F,(EXP (3)) s CURVE WITH DELAYS
++¢+ £ (S)sCURYE WITH NO DELRYS

unnn PART OF E
TO OMEGR OF F (S) BOUN
ITS OUTER INTERSECTIONS WITH
F (EXP (S))

. (EXP (S)) CORRESPONDING 3
DED 8Y

0.80

O

SATCHE DIAGRAM 3-DELAY (S) PROBLEM
CONSTANTS: K=0,17 ,TAU1=1.00

1ng Exrogsgrs Fog E"E Puneorxus gehnrs ARE:
THE FEEOBACK COEFFICIENTS FOR THE DELAYS ARE:
1.0 1.0 1.0 0.0

T T ” 3

0.40 0.60 0.80

CALCOMP COHPUTER-DHHHN PLOT
PROGRAM-PLOT DESIGN :+ JACQUES PRESS
OATEs 8/1/72

Figure 26. First Satche diagram for a case with three delays.
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0.80

——F,(EXP (8)) 1 CURVE NITH DELAYS SATCHE DIAGRAM  3-0ELAY(3) PROBLEM
CONSTANTS: K= 0.20 TAUL=1.78 = o Ane
e+ve £(9) {CURVE WITH NO DELAYS THE EXPONENTS FOR THE PURE TINE DELAYS ARE:
S |. [ THE FEEDBACK COEFFICIENTS FOR THE DELAYS ARE:
wann PART OF EIEXP(3)) connssronomc 1 10 1.0 1.0 0.0 0.0

T0 OMEGR OF F (31 BOUNDE
ITS QUTER INTERSECTIONS unn
F, (EXP (S))

0.40 0.60 0.80
o CALCOMP COMPUTER-DRAWN PLOT
@ PROGRAM-PLOT DESIGN s JACQUES PRESS
[-¥ ORTE: 8/1/172

Figure 27. Second Satche diagram for a case with three delays.
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0.80

.

—FE (EXP (S) ) sCURVE WITH DELAYS SATCHE DIAGRAM 3-DELAY (S)’ PROBLEM
CONSTANTS: K=0.15 . TAUL=2.00 -
++++ F(3) (CURVE WITH NO DELAYS JHE EXPORERTS FOB THE PUREQTME DEgT> AREs
9| | THE FEEOBACK COEFFICIENTS FOR THE DELAYS ARE:
wwmn PART OF F (EXP (1) connzsronnmc 4 (1.0 1.0 1.0 0.0 0.0
TO OMEGR OF F (3) BOUNDED
1TS OUTER mfensecnous WITH
£ (EXP (3))
o
N>
el
-t
[T
a8
= .

1
0.40

-] CALCOMP COMPUTER-ORAWN PLOT

@ PROGRAM-PLOT OESIGN s+ JACQUES PRESS
(]

t

J DATE: 8/1/72

Figure 28. Third Satche diagram for a case with three delays.
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0.80

—FR (EXP(S)) s CURVE WITH DELAYS

++++ F(S) 1CURVE WITH NG DELATS
O

unnn PART OF £ (EXP (S)) CURRESPONDING 3

70 OMEGA oF F (S) BOUNDED BY
173 our:n INTERSECTIONS WITH
£, (EXP (S))

SATCHE DIHGBRM Y-DELAY {S) PROBLEM
CONSTANTS: K=0.11 ,TAUL=1.
THE EXPONENTS FOR THE PURE TIME DELAYS ARE:

1.0 2.0 2.0 0.
THE FEEDBACK COEFFICIENTS FOR THE DELAYS ARE:
1.0 1.0 1.0 1.0 0.0

-0.60

0.30 0.40

CALCOMP COMPUTER-DRAKN PLOT
PROGAAM-PLOT DESIGN 1 JACQUES PRESS
DATEs 8/1/72

Figure 29. Satche diagram for a case with four delays.
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0.80

——F (EXP (33) ¢ CURVE KITH DELAYS SATCHE DIAGRAM S-0ELAY (3) PROBLEM
CONSTANTS: = K= 0.10 . TAUL= 1.00
£ 13) sCURVE NITH NO DELAYS HE EXPONENTS FOR THE PURE TIME OELAYS ARE:

1,0 1,0 1, 1.
THE FEEOBRCK COEFFICIENTS FOR THE DELAYS RRE:s
o rnm or o & EXP (Slal connearounmc 4 | 1.0 1.0 1.0 1.0 1.0

s oun:n INTERSECTIONS WITH
£, (EXP (3))

60
-

60T

=] CaLCOMP COHPUTEH ORARKWN PLO
© PROGAAM-PLOT DESIGN ¢ JHCOUES PRESS
o DATE: 8/1/72

Figure 30. First Satche diagram for a case with five delays.



1,680

——F (EXP (3)) {CUAVE WITH DELAYS SATCHE DIAGRAM 5-DELAY (31 PROBLEM
CONSTANTS: K= 0.35 TAUL=1.00 ~ .~
+r++ F(3)1CURVE WITH NO DELAYS THE EXPONENTS FOfi THE PURE TIME D€ '
Q| | THE FEEOBACK COEFFICIENTS FOR THE DELAYS ARE:

wwww PART OF F (EXP(3)) CORRESPONDING 4 [ !-0 1.0 1.0 1.0 1.0

70 GMEGA 6F F (3) BOUNDED BY

ITS OUTER N WITH -~

F, (EXP (3 —

(7

"".‘ .

(4....
K

-2.00 -1.60 -1.20

OMPUTER-DRAWN PLOT

AQGRAM-PLOT DESIGN « JACQUES PRESS
ATE: 8/1/72

Figure 31. Second Satche diagram for a case with five delays.
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T1T

0.40

—F, (EXP (S} ) : CURVE WITH DELAYS

++++ [ (S)sCURVE WITH NO DELAYS
b=

wmurne PART OF F (EXP (S}) CORRESPONDINGS o
TO GMEGR OF F (5} BOUNDED BY

1TS OUTER INTERSECTIONS WITH

;R (EXP (S))

SATCHE DIAGRAM S-DELAY (S) PROBLEM

CONSTANTS: K= 0.07 ,TAUL=1,00

THE EXPONENTS FOR THE PURE TIME DELAYS ARE:
1.0 2.0 2.5 0. 4.0

THE FEEDBACK COEFFICIENTS FOR THE DELAYS ARE:
1.0 1.0 1.0 1.0

T
0.1

0.08
ERL F1,F2

0.32

CALCOMP COMPUTER-DRAWN PLOT

PROGRAM-PLOT DESIGN
DATE: 8/1/72

Figure 32. Third Satche diagram for a case with five delays.

1 JARCQUES PRESS



